scholarly journals CENTRIFUGAL COMPRESSOR PERFORMANCE MAPS TREATMENT FOR INTERNAL COMBUSTION ENGINES OPERATING CYCLE SIMULATION

2021 ◽  
pp. 9-15
Author(s):  
D. Minchev ◽  
R. Varbanets

Simulation of the supercharged internal combustion engines operation cycle is impossible without correct estimation of the supercharger operating parameters. Standard approach is to use specially prepared performance maps of compressor and turbine of the turbocharger, which are based on the experimental (or manufacturer’s) raw data. Centrifugal compressor performance maps interpolation, extrapolation and treatment provides challenging requirements as it is important to get correct simulation under such special conditions as compressor choke, rotating stall and pumping surge. At the same time it’s important to obtain the fast and stable calculations of the engine’s operating cycle. Blitz-PRO – online internal combustion engines operating cycle simulation service – offers supercharger performance maps preprocessing and implementation. It provides three different modes of compressor surge consideration during calculations: 1) full-scale surge mode using Moore-Greitzer approach; 2) mild surge mode with flexible adjustment; 3) “stable” mode, when the surge is neglected and the compressor constant-speed lines are extended from the rotating stall point to the lower mass flow region with the hyperbolic equation. Using the MAN 8G70ME-E engine 12140 kW, 82 rpm operating point as an example, the calculation results are compared for three modes of compressor surge consideration. The “stable” mode provides the fastest and the most stable calculations, while the calculations under the full-scale surge mode could generate the numerical (nonphysical) instability of calculations, which are caused by the high sensitivity of the two-stroke engines to the gas exchange processes as it is shown. The mild surge mode provides fast and stable enough calculation with the surge consideration ability, which could be assumed as the best solution for the given example. The researcher should choose between provided three modes of the centrifugal compressor surge consideration according to the calculations tasks, preferring “stable” mode for initial model setup and mild surge mode for the surge probability check, while the accurate compressor surge simulation needs further development.

2017 ◽  
Vol 19 (10) ◽  
pp. 1005-1023 ◽  
Author(s):  
Jerald A Caton

The thermodynamic limitation for the maximum efficiencies of internal combustion engines is an important consideration for the design and development of future engines. Knowing these limits helps direct resources to those areas with the most potential for improvements. Using an engine cycle simulation which includes the first and second laws of thermodynamics, this study has determined the fundamental thermodynamics that are responsible for these limits. This work has considered an automotive engine and has quantified the maximum efficiencies starting with the most ideal conditions. These ideal conditions included no heat losses, no mechanical friction, lean operation, and short burn durations. Then, each of these idealizations is removed in a step-by-step fashion until a configuration that represents current engines is obtained. During this process, a systematic thermodynamic evaluation was completed to determine the fundamental reasons for the limitations of the maximum efficiencies. For the most ideal assumptions, for compression ratios of 20 and 30, the thermal efficiencies were 62.5% and 66.9%, respectively. These limits are largely a result of the combustion irreversibilities. As each of the idealizations is relaxed, the thermal efficiencies continue to decrease. High compression ratios are identified as an important aspect for high-efficiency engines. Cylinder heat transfer was found to be one of the largest impediments to high efficiency. Reducing cylinder heat transfer, however, is difficult and may not result in much direct increases of piston work due to decreases of the ratio of specific heats. Throughout this work, the importance of high values of the ratio of specific heats was identified as important for achieving high thermal efficiencies. Depending on the selection of constraints, different values may be given for the maximum thermal efficiency. These constraints include the allowed values for compression ratio, heat transfer, friction, stoichiometry, cylinder pressure, and pressure rise rate.


2017 ◽  
Vol 5 (1) ◽  
pp. 5-17
Author(s):  
Andrzej Ambrozik ◽  
Dariusz Kurczyński ◽  
Piotr Łagowski

Abstract Modern means of transport are basically powered by piston internal combustion engines. Increasingly rigorous demands are placed on IC engines in order to minimise the detrimental impact they have on the natural environment. That stimulates the development of research on piston internal combustion engines. The research involves experimental and theoretical investigations carried out using computer technologies. While being filled, the cylinder is considered to be an open thermodynamic system, in which non-stationary processes occur. To make calculations of thermodynamic parameters of the engine operating cycle, based on the comparison of cycles, it is necessary to know the mean constant value of cylinder pressure throughout this process. Because of the character of in-cylinder pressure pattern and difficulties in pressure experimental determination, in the present paper, a novel method for the determination of this quantity was presented. In the new approach, the iteration method was used. In the method developed for determining the volumetric efficiency, the following equations were employed: the law of conservation of the amount of substance, the first law of thermodynamics for open system, dependences for changes in the cylinder volume vs. the crankshaft rotation angle, and the state equation. The results of calculations performed with this method were validated by means of experimental investigations carried out for a selected engine at the engine test bench. A satisfactory congruence of computational and experimental results as regards determining the volumetric efficiency was obtained. The method for determining the volumetric efficiency presented in the paper can be used to investigate the processes taking place in the cylinder of an IC engine.


2009 ◽  
Vol 13 (3) ◽  
pp. 35-46 ◽  
Author(s):  
Karima Boussouara ◽  
Mahfoud Kadja

Modelling internal combustion engines can be made following different approaches, depending on the type of problem to be simulated. A diesel combustion model has been developed and implemented in a full cycle simulation of a combustion, model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion, and soot pollutant formation. The models of turbulent combustion of diffusion flame, apply to diffusion flames, which one meets in industry, typically in the diesel engines particulate emission represents one of the most deleterious pollutants generated during diesel combustion. Stringent standards on particulate emission along with specific emphasis on size of emitted particulates have resulted in increased interest in fundamental understanding of the mechanisms of soot particulate formation and oxidation in internal combustion engines. A phenomenological numerical model which can predict the particle size distribution of the soot emitted will be very useful in explaining the above observed results and will also be of use to develop better particulate control techniques. A diesel engine chosen for simulation is a version of the Caterpillar 3406. We are interested in employing a standard finite-volume computational fluid dynamics code, KIVA3V-RELEASE2.


Author(s):  
Mikhail Sergeevich Kurlenko ◽  
Alexander Aleksandrovich Budin ◽  
Aleksandr Dorokhov ◽  
Nikolay Vasilievich Selivanov

The need in research works on improving working process of internal combustion engines requires analyzing parameters of operation cycle. The aim of the study is to create a generalized technique for calculating the high-speed cycle diesel engines under different ways of working processes based on well-researched and reliable methodology based on using dependencies containing the general parameters of the engine performance. With the development of technology, particularly, engine manufacturing and evolution of engineering thought, by combining and add-on workflow operationalization of internal combustion engines there was received a reliable Grinevetskiy-Mazing technique of engineering calculations as a general system. Professor V.I. Grinevetskiy in his thermal design offered a pre-set temperature of residual gases Т г and cylinder filling factor ηN and gave formulas to calculate the starting compression temperature coefficient γг. The follower of V.I. Grinevetskiy, E.K. Mazing offered to evaluate the temperature of residual gases Т г and residual gas coefficient γг, and to calculate temperature of starting pressure Та and filling coefficient ηN introducing value of temperature Т′ 0 (air wormed by cylinder walls) into Grinevetskiy equation system. Today there are various software analytical complexes with different capacity (number of integrated functions), assignment (analysis, diagnostics, check calculation, design etc.), as well as basic method of calculation, which is the basic principle of the whole logic complex. Grinevetskiy-Mazing technique that has passed evolution of specifications and complements made in the course of time forms the basis of calculating method of operation cycle of marine diesel engines.


2018 ◽  
Author(s):  
Branislav Basara ◽  
Zoran N. Pavlovic ◽  
Sinisa Krajnovic

Sign in / Sign up

Export Citation Format

Share Document