scholarly journals EXPERIMENTAL APPROBATION OF SHEET METAL MAGNETIC PERMEABILITY MEASUREMENT SYSTEMS

2014 ◽  
Vol 0 (4) ◽  
pp. 56-60
Author(s):  
E. A. Chaplygin ◽  
M. V. Barbashova ◽  
O. S. Sabokar
Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1401
Author(s):  
Siyuan Fang ◽  
Xiaowan Zheng ◽  
Gang Zheng ◽  
Boyang Zhang ◽  
Bicheng Guo ◽  
...  

More and more attention has been given in the field of mechanical engineering to a material’s R-value, a parameter that characterizes the ability of sheet metal to resist thickness strain. Conventional methods used to determine R-value are based on experiments and an assumption of constant volume. Because the thickness strain cannot be directly measured, the R-value is currently determined using experimentally measured strains in the width, and loading directions in combination with the constant volume assumption, to determine the thickness strain indirectly. This paper provides an alternative method for determining the R-value without any assumptions. This method is based on the use of a multi-camera DIC system to measure strains in three directions simultaneously. Two sets of stereo-vision DIC measurement systems, each comprised of two GigE cameras, are placed on the front and back sides of the sample. Use of the double-sided calibration strategy unifies the world coordinate system of the front and back DIC measurement systems to one coordinate system, allowing for the measurement of thickness strain and direct calculation of R-value. The Random Sample Consensus (RANSAC) algorithm is used to eliminate noise in the thickness strain data, resulting in a more accurate R-value measurement.


Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 171
Author(s):  
Giorgos Tatsis ◽  
Vasilis Christofilakis ◽  
Spyridon K. Chronopoulos ◽  
Panos Kostarakis ◽  
Hector E. Nistazakis ◽  
...  

This paper presents a prototype test fixture for the absolute calibration and estimation of the equivalent magnetic flux noise of the extremely low frequency (ELF) Schumann resonant (SR) magnetic antenna receiver and rods’ magnetic permeability measurement. The test fixture, for ELF the SR detector’s calibration, consists of a constructed coil, the signal generator, and the oscilloscope. The ELF SR detector used has been operating since 2016 near the Doliana village in the Ioannina prefecture, Northwestern Greece. At precisely this spot, far away from electromagnetic noise, the whole setup and experiment took place. The experiments performed with the proposed test fixture showed a sensitivity of 70 nV/pT/Hz and an apparent magnetic permeability at around 250 for the magnetic antenna. The total sensitivity of the ELF receiver was 210 mV/pT near 20 Hz, while the total input noise was around 0.04 pT.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1051 ◽  
Author(s):  
Christian Jaremenko ◽  
Nishant Ravikumar ◽  
Emanuela Affronti ◽  
Marion Merklein ◽  
Andreas Maier

The forming limit curve (FLC) is used to model the onset of sheet metal instability during forming processes e.g., in the area of finite element analysis, and is usually determined by evaluation of strain distributions, derived with optical measurement systems during Nakajima tests. Current methods comprise of the standardized DIN EN ISO 12004-2 or time-dependent approaches that heuristically limit the evaluation area to a fraction of the available information and show weaknesses in the context of brittle materials without a pronounced necking phase. To address these limitations, supervised and unsupervised pattern recognition methods were introduced recently. However, these approaches are still dependent on prior knowledge, time, and localization information. This study overcomes these limitations by adopting a Siamese convolutional neural network (CNN), as a feature extractor. Suitable features are automatically learned using the extreme cases of the homogeneous and inhomogeneous forming phase in a supervised setup. Using robust Student’s t mixture models, the learned features are clustered into three distributions in an unsupervised manner that cover the complete forming process. Due to the location and time independency of the method, the knowledge learned from formed specimen up until fracture can be transferred on to other forming processes that were prematurely stopped and assessed using metallographic examinations, enabling probabilistic cluster membership assignments for each frame of the forming sequence. The generalization of the method to unseen materials is evaluated in multiple experiments, and additionally tested on an aluminum alloy AA5182, which is characterized by Portevin-LE Chatlier effects.


Author(s):  
Felix H. Blankenstein ◽  
Ulrike Kielburg ◽  
Ludwig Melerowitz ◽  
Daniel Stelmaszczyk

Abstract Aim Metal dental products lack precautionary statements regarding MR compatibility due to an exemption in the labelling obligation. Hence, it is difficult for radiologists to decide whether to remove fixed metal objects in patients prior to MRI. A solution could be the direct determination of the magnetic permeability (µr) as a decisive material-related predictor of artifact formation and other interactions. Thus, the applicability of an industrially used measurement device as a screening instrument and the relevance of the manufacturer’s application restrictions in vitro and in vivo were tested. Methods Precision and trueness were tested using self-made test objects with different dimensions and different permeability. To clarify whether the measurement results are affected by the remanence (BR) induced in the objects, 28 brackets of different materials were exposed to a weak and a strong external magnetic field and the magnetic flux density before and after these exposures was compared. The clinical test was performed on a volunteer with an orthodontic appliance experimentally composed of brackets with different levels of magnetic permeability (µr). Validity and intra- and interrater reliability were calculated using two rater groups consisting of four dentists and four medical-technical radiology assistants (MTRA), respectively. Results With coefficients of variation below 0.14%, precision was excellent regardless of object surface and size. Trueness was high on objects with µr ≤ 1.002, and decreased with increasing µr, for which size-dependent correction factors were calculated. Intra- and interrater reliability and validity were excellent and independent of professional intraoral manipulation experience. Conclusions The permeability measurement allows for a valid and reliable determination of the magnetizability of intraoral metal objects. When used as a screening tool to detect nonartifact-causing objects, no correction factor needs to be calculated. For the first time, it offers radiologists a decision support for the selective removal of only the highly permeable components of the multiband apparatus.


Sign in / Sign up

Export Citation Format

Share Document