A METHOD FOR EVALUATING THE RISK OF BACKFILLING COAL MINES WITH COAL COMBUSTION BYPRODUCTS AND STEEL SLAG

2002 ◽  
Vol 2002 (1) ◽  
pp. 582-601 ◽  
Author(s):  
Paul F. Ziemkiewicz ◽  
Jennifer S. Simmons
Author(s):  
Junxiang Guo ◽  
Lingling Zhang ◽  
Daqiang Cang ◽  
Liying Qi ◽  
Wenbin Dai ◽  
...  

Abstract In this study, a novel swirl combustion modified device for steel slag was designed and enhanced with the objective of achieving highly efficient and clean coal combustion and also for achieving the whole elements utilization of coal. Coal ash and steel slag were melted in the combustion chamber and subsequently entered the slag chamber. The detrimental substances solidified and formed crystals, which allowed for the comprehensive utilization of the ash and slag. Our experiments mainly aimed to mitigate the formation of NOx, while using the heat and slag simultaneously during the coal combustion without a combustion efficiency penalty. The increase in the device’s energy efficiency and reduction in the NOx emissions are important requirements for industrialization. The experiments were carried out in an optimized swirling combustion device, which had a different structure and various coal feeding conditions in comparison to previously reported devices. The fuel-staged and non-staged combustion experiments were compared under different coal ratios (bitumite:anthracite). For the fuel-staged combustion experiments, the NOx concentration in the flue gas was observed to decrease significantly when the coal ratio of 1:1, an excess air coefficient of 1.2, and a fuel-staged ratio of 15:85 were used. Under these conditions, the flue gas temperature was as high as 1,620°C, while the NOx concentration was as low as 320 mg/m3 at 6 % O2. The air-surrounding-fuel structure that formed in the furnace was very beneficial in reducing the formation of NOx. In comparison to other types of coal burners, the experimental combustion device designed in this study achieved a significant reduction of NOx emissions (approximately 80 %).


2012 ◽  
Vol 2012 ◽  
pp. 1-3
Author(s):  
Konstantin Osintsev

Any coal-fired boiler is always designed on a certain kind of coal. In the EU and Russia in the old coal mines can be mined coal with a high content of moisture and ash. In order to use coal with different characteristics in the same steam generator, it is necessary to create a new coal combustion technology.


Author(s):  
James S. Webber

INTRODUCTION“Acid rain” and “acid deposition” are terms no longer confined to the lexicon of atmospheric scientists and 1imnologists. Public awareness of and concern over this phenomenon, particularly as it affects acid-sensitive regions of North America, have increased dramatically in the last five years. Temperate ecosystems are suffering from decreased pH caused by acid deposition. Human health may be directly affected by respirable sulfates and by the increased solubility of toxic trace metals in acidified waters. Even man's monuments are deteriorating as airborne acids etch metal and stone features.Sulfates account for about two thirds of airborne acids with wet and dry deposition contributing equally to acids reaching surface waters or ground. The industrial Midwest is widely assumed to be the source of most sulfates reaching the acid-sensitive Northeast since S02 emitted as a byproduct of coal combustion in the Midwest dwarfs S02 emitted from all sources in the Northeast.


2004 ◽  
Author(s):  
Rebecca J. Atkins ◽  
H. Peter Pfister ◽  
Mark Fleming ◽  
Steven M. Smith

Sign in / Sign up

Export Citation Format

Share Document