scholarly journals Low-Temperature Combustion Technology

2012 ◽  
Vol 2012 ◽  
pp. 1-3
Author(s):  
Konstantin Osintsev

Any coal-fired boiler is always designed on a certain kind of coal. In the EU and Russia in the old coal mines can be mined coal with a high content of moisture and ash. In order to use coal with different characteristics in the same steam generator, it is necessary to create a new coal combustion technology.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3727
Author(s):  
Márton Virt ◽  
Gergely Granovitter ◽  
Máté Zöldy ◽  
Ádám Bárdos ◽  
Ádám Nyerges

Nowadays, increasingly stricter regulations on emission reduction are inducing rapid developments in combustion science. Low-temperature combustion (LTC) is an advanced combustion technology that increases an engine’s thermal efficiency and even provides low emissions of nitrogen oxides (NOx) and particulate matter (PM). The technology often uses early direct injections to achieve sufficient mixture homogeneity. This leads to increasing wall wetting and lower combustion efficiency. This paper introduces the Multipulse ballistic injection (MBI) method to improve combustion with early injection timings. The research was carried out in a four-cylinder medium-duty diesel engine with high-pressure exhaust gas recirculation (HP-EGR). The investigation was divided into two experiments. In the first experiment, MBI was examined without EGR, and in the second, EGR was applied to study its effects. It was found that the MBI strategy decreased wall wetting and increased homogeneity and the indicated mean effective pressure (IMEP) at early injection angles.


Author(s):  
Stephen M. Walton ◽  
Carlos Perez ◽  
Margaret S. Wooldridge

Ignition studies of two small esters were performed using a rapid compression facility (RCF). The esters (methyl butanoate and butyl methanoate) were chosen to have matching molecular weights, and C:H:O ratios, while varying the lengths of the constituent alkyl chains. The effect of functional group size on ignition delay time was investigated using pressure time-histories and high speed digital imaging. The mixtures studied covered a range of conditions relevant to oxygenated fuels and fuel additives, including bio-derived fuels. Low temperature and moderate pressure conditions were selected for study due to their relevance to advanced low temperature combustion strategies, and internal combustion engine conditions. The results are discussed in terms of the reaction pathways affecting the ignition properties.


Author(s):  
Yilu Lin ◽  
Han Wu ◽  
Karthik Nithyanandan ◽  
Timothy H. Lee ◽  
Chia-fon F. Lee ◽  
...  

Bio-butanol, a promising alternative transportation fuel, has its industrial-scale production hindered significantly by high cost component purification process from acetone-butanol-ethanol (ABE) broth. The purpose of this study is to investigate the possibility of using ABE-Diesel blends with high ABE percentages as an alternative transportation fuel. An optical-accessible constant volume chamber capable of controlling ambient temperature, pressure and oxygen concentration was used to mimic the environmental conditions inside a real diesel engine cylinder. ABE fuel with typical volumetric ratios of 30% acetone, 60% butanol and 10% ethanol were blended with ultra-low sulfur diesel at 80% vol. and were tested in this study. The ambient temperature was set to be at 1100K and 900K, which represents normal combustion conditions and low temperature combustion conditions respectively. The ambient oxygen concentrations were set to be at 21%, 16% and 11%, representing different EGR ratios. The in-cylinder pressure was recorded by using a pressure transducer and the time-resolved Mie-scattering image and natural flame luminosity was captured using a high-speed camera coupled with a copper vapor laser. The results show that the liquid penetration is reduced by the high percentage of ABE in the blends. At the same time, the soot formation is reduced significantly by increasing oxygen content in the ABE fuel. Even more interesting, a soot-free combustion was achieved by combining the low temperature combustion with the higher percentage ABE case. In terms of soot emission, high ABE ratio blends are a very promising alternative fuel to be directly used in diesel engines especially under low-temperature combustion conditions.


Sign in / Sign up

Export Citation Format

Share Document