scholarly journals Deep learning based classification of ultrasound images for thyroid nodules: a large scale of pilot study

2019 ◽  
Vol 7 (7) ◽  
pp. 137-137 ◽  
Author(s):  
Qing Guan ◽  
Yunjun Wang ◽  
Jiajun Du ◽  
Yu Qin ◽  
Hongtao Lu ◽  
...  

Ultrasound scanning is most excellent significant diagnosis techniques utilized for thyroid nodules identification. A thyroid nodule is unnecessary cells that can develop in your base of neck which can be normal or cancerous. Many Computer added diagnosis systems (CAD) have been developed as a second opinion for radiologist. The thyroid nodules classification using machine learning and deep learning approach is latest trend which is using to improve accuracy for differentiation of thyroid nodules from benign and malignant type. In this paper we review the most recent work on CAD system which uses different feature extraction technique and classifier used for thyroid nodules classification with deep learning approach. This paper we illustrate the result obtained by these studies and highlight the limitation of each proposed methods. Moreover we summarize convolution neural network (CNN) architecture for classification of thyroid nodule. This literature review is meant at researcher but it also useful for radiologist who is interesting in CAD tool in ultrasound imaging for second opinion.


2020 ◽  
Vol 26 ◽  
Author(s):  
Xi Wei ◽  
Ming Gao ◽  
Ruiguo Yu ◽  
Zhiqiang Liu ◽  
Qing Gu ◽  
...  

Author(s):  
Mathieu Turgeon-Pelchat ◽  
Samuel Foucher ◽  
Yacine Bouroubi

Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.


Author(s):  
Masaya Tanaka ◽  
Atsushi Saito ◽  
Kosuke Shido ◽  
Yasuhiro Fujisawa ◽  
Kenshi Yamasaki ◽  
...  

2021 ◽  
Author(s):  
Zijian Zhao ◽  
Congmin Yang ◽  
Qian Wang ◽  
Huawei Zhang ◽  
Linlin Shi ◽  
...  

2020 ◽  
Vol 28 (6) ◽  
pp. 1123-1139
Author(s):  
Liqun Zhang ◽  
Ke Chen ◽  
Lin Han ◽  
Yan Zhuang ◽  
Zhan Hua ◽  
...  

BACKGROUND: Calcification is an important criterion for classification between benign and malignant thyroid nodules. Deep learning provides an important means for automatic calcification recognition, but it is tedious to annotate pixel-level labels for calcifications with various morphologies. OBJECTIVE: This study aims to improve accuracy of calcification recognition and prediction of its location, as well as to reduce the number of pixel-level labels in model training. METHODS: We proposed a collaborative supervision network based on attention gating (CS-AGnet), which was composed of two branches: a segmentation network and a classification network. The reorganized two-stage collaborative semi-supervised model was trained under the supervision of all image-level labels and few pixel-level labels. RESULTS: The results show that although our semi-supervised network used only 30% (289 cases) of pixel-level labels for training, the accuracy of calcification recognition reaches 92.1%, which is very close to 92.9% of deep supervision with 100% (966 cases) pixel-level labels. The CS-AGnet enables to focus the model’s attention on calcification objects. Thus, it achieves higher accuracy than other deep learning methods. CONCLUSIONS: Our collaborative semi-supervised model has a preferable performance in calcification recognition, and it reduces the number of manual annotations of pixel-level labels. Moreover, it may be of great reference for the object recognition of medical dataset with few labels.


2020 ◽  
Vol 17 (4) ◽  
Author(s):  
Masaru Matsumoto ◽  
Takuya Tsutaoka ◽  
Gojiro Nakagami ◽  
Shiho Tanaka ◽  
Mikako Yoshida ◽  
...  

2019 ◽  
Vol 54 (S1) ◽  
pp. 86-87
Author(s):  
X.P. Burgos‐Artizuu ◽  
E. Eixarch ◽  
D. Coronado‐Gutierrez ◽  
B. Valenzuela ◽  
E. Bonet‐Carne ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document