scholarly journals Identification and evaluation of fructose-bisphosphate aldolase B as a potential diagnostic biomarker in choledochal cysts patients: a quantitative proteomic analysis

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Gedong Ming ◽  
Wanliang Guo ◽  
Yuan Cheng ◽  
Jian Wang
2019 ◽  
Vol 3 (2) ◽  
Author(s):  
A. P. A. A. Salim ◽  
S. P. Suman ◽  
S. Li ◽  
Y. Wang ◽  
J. Chen ◽  
...  

ObjectivesCooking ensures safety and enhances the palatability attributes of meat. Denaturation of myoglobin results in the dull-brown color of cooked meats. The denaturation of sarcoplasmic proteins is influenced by the degree of heat treatment, and their solubility is decreased with an increase in the endpoint cooking temperature. While previous studies examined the relationship between myoglobin denaturation, cooked color, and internal temperature in beef, investigations are yet to be undertaken to characterize the association between endpoint temperature, sarcoplasmic proteome, and color attributes in cooked steaks. Therefore, the objective of the present study was to examine the influence of endpoint cooking temperature (60 and 71°C) on sarcoplasmic proteome and internal color of beef longissimus lumborum (LL) steaks.Materials and MethodsEight (n = 8) beef LL muscles (14 d postmortem; USDA Choice) were obtained from a commercial packing plant. Two 2.5-cm thick steaks were fabricated from the center of the muscles and were cooked to internal endpoint temperature of 60°C (C-60) or 71°C (C-71) in a clam-shell grill. Cooked steaks were immediately cooled in slushed ice, sliced parallel to the grilled surface, and internal redness (a* value) and color stability (R630/580) were evaluated instrumentally. Sarcoplasmic proteome from the interiors of the cooked steaks was analyzed using 2-dimensional electrophoresis, and the gel images were digitally analyzed. The protein spots exhibiting more than 2.5-fold intensity differences (P < 0.05) between C-60 and C-71 were subjected to in-gel tryptic digestion and were identified by tandem mass spectrometry.ResultsThe C-60 steaks demonstrated greater (P < 0.05) a* and R630/580 than their C-71 counterparts. Seven differentially abundant proteins were identified and were over-abundant (P < 0.05) in C-60 compared to C-71. The differentially abundant proteins belong to 6 functional groups, i.e., transport proteins (serum albumin and hemoglobin), energy metabolism (adenylate kinase isoenzyme 1), chaperones (heat shock protein β-1), antioxidant (thioredoxin-dependent peroxide reductase), glycolytic enzymes (fructose-bisphosphate aldolase B), and protease (cytosol aminopeptidase).ConclusionThe findings indicated that the endpoint cooking temperature influences the internal cooked color and the sarcoplasmic proteome profile of beef LL steaks. The overabundant proteins in steaks cooked to 60°C may be utilized as potential biomarkers for undercooked beef, which is a source for foodborne infections.


2021 ◽  
Vol 135 ◽  
pp. 204-216
Author(s):  
Dingding Lü ◽  
Ping Xu ◽  
Chengxiang Hou ◽  
Ruilin Li ◽  
Congwu Hu ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huiyi Song ◽  
Ni Lou ◽  
Jianjun Liu ◽  
Hong Xiang ◽  
Dong Shang

Abstract Background Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. Methods To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. Results The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.


Sign in / Sign up

Export Citation Format

Share Document