scholarly journals Genetic instability of the Omicron strain of the SARS-CoV-2 virus.

Author(s):  
D Semyonov

Among the mutations found in the Omicron strain, the results of cytosine deamination dominate. There is a mutation in the nsp14 gene. These two facts suggest that the omicron strain has an impaired repair system. The instability of the genome of the Omicron strain to the action of APOBEC deaminases will most likely lead to the degradation of this strain. However, the same mutations have led to several dangerous properties of the Omicron strain. It is proposed to use the instability of the Omicron strain to deamination of cytosine for the prevention of a severe course of the disease.

2008 ◽  
Vol 82 (6) ◽  
pp. 2652-2660 ◽  
Author(s):  
April J. Schumacher ◽  
Guylaine Haché ◽  
Donna A. MacDuff ◽  
William L. Brown ◽  
Reuben S. Harris

ABSTRACT Human APOBEC3G and several other APOBEC3 proteins have been shown to inhibit the replication of a variety of retrotransposons and retroviruses. All of these enzymes can deaminate cytosines within single-strand DNA, but the overall importance of this conserved activity in retroelement restriction has been questioned by reports of deaminase-independent mechanisms. Here, three distinct retroelements, a yeast retrotransposon, Ty1, a murine endogenous retrovirus, MusD, and a lentivirus, human immunodeficiency virus type 1 (HIV-1), were used to evaluate the relative contributions of deaminase-dependent and -independent mechanisms. Although human APOBEC3G can restrict the replication of all three of these retroelements, APOBEC3G lacking the catalytic glutamate (E259Q) was clearly defective. This phenotype was particularly clear in experiments with low levels of APOBEC3G expression. In contrast, purposeful overexpression of APOBEC3G-E259Q was able to cause modest to severe reductions in the replication of Ty1, MusD, and HIV-1(ΔVif). The importance of these observations was highlighted by data showing that CEM-SS T-cell lines expressing near-physiologic levels of APOBEC3G-E259Q failed to inhibit the replication of HIV-1(ΔVif), whereas similar levels of wild-type APOBEC3G fully suppressed virus infectivity. Despite the requirement for DNA deamination, uracil DNA glycosylase did not modulate APOBEC3G-dependent restriction of Ty1 or HIV-1(ΔVif), further supporting prior studies indicating that the major uracil excision repair system of cells is not involved. In conclusion, the absolute requirement for the catalytic glutamate of APOBEC3G in Ty1, MusD, and HIV-1 restriction strongly indicates that DNA cytosine deamination is an essential part of the mechanism.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Thaila Fernanda dos Reis ◽  
Lilian Pereira Silva ◽  
Patrícia Alves de Castro ◽  
Rafaela Andrade do Carmo ◽  
Marjorie Mendes Marini ◽  
...  

ABSTRACT The genetic stability of every living organism depends on accurate DNA replication and repair systems. Here, we investigated the Aspergillus fumigatus MSH2 mismatch repair (MMR) gene MshA and how it impacts virulence and the evolution of azole resistance. We examined mshA gene variation in 62 environmental and clinical A. fumigatus strains. We have observed 12 strains with variants (18.2%), and 8 strains among them showed missense variants. We demonstrated that A. fumigatus mshA null mutants are haploid and have conserved karyotypes with discrete gross chromosomal rearrangements. The ΔmshA strains are not sensitive to several DNA-damaging agents. The lack of mshA caused a significant reduction of virulence of A. fumigatus in a neutropenic murine model of invasive pulmonary aspergillosis and in the invertebrate alternative model Galleria mellonella. Wild-type and ΔmshA populations did not show any significant changes in drug resistance acquisition after they were transferred 10 times in minimal medium in the absence of any stress. However, these populations rapidly acquired virulence in the ΔmshA background and high levels of resistance to posaconazole in the presence of this drug (at least 200-fold-higher levels of resistance than those derived from the wild-type strain). Taken together, these results suggest that genetic instability caused by ΔmshA mutations can confer an adaptive advantage, mainly increasing posaconazole resistance and virulence acquisition. IMPORTANCE Invasive aspergillosis (IA) has emerged as one of the most common life-threatening fungal diseases in immunocompromised patients, with mortality rates as high as 90%. Systemic fungal infections such as IA are usually treated with triazoles; however, epidemiological research has shown that the prevalence of azole-resistant Aspergillus fumigatus isolates has increased significantly over the last decade. There is very little information about the importance of genomic stability for A. fumigatus population structure, azole resistance, and virulence. Here, we decided to investigate whether the mismatch repair system could influence A. fumigatus azole resistance and virulence, focusing on one of the components of this system, MSH2. Although the mutation frequency of mshA (the A. fumigatus MSH2 homologue) is low in environmental and clinical isolates, our results indicate that loss of mshA function can provide increased azole resistance and virulence when selected for. These results demonstrate the importance of genetic instability in A. fumigatus as a possible mechanism of evolving azole resistance and establishing fitness in the host.


2005 ◽  
Vol 173 (4S) ◽  
pp. 233-233
Author(s):  
Xifeng Wu ◽  
H. Barton Grossman ◽  
George L. Delclos ◽  
Ladia M. Hernandez ◽  
R. Sue Day ◽  
...  

Author(s):  
V. N. Babakov ◽  
N. Yu. Rogovskaya ◽  
I. D. Kurdyukov ◽  
P. P. Beltyukov ◽  
S. A. Dulov ◽  
...  

The effect of aryl hydrocarbon receptor agonists (FICZ and ITE), as well as lipopolysaccharide under the toxic action of benzo(a)pyrene in HepaRG human hepatoma cells was evaluated. Active forms of the key stress-activated kinase cascades and DNA repair system proteins were used as markers of the genotoxic action of benzo(a)pyrene. A mixture of lipopolysaccharide with benzo(a)pyrene increases benzo(a)pyrene cytotoxicity and reduces the activation of DNA repair system proteins below the control level. Aryl hydrocarbon receptor agonists (FICZ and ITE) exhibit a cytoprotective effect against benzo(a) pyrene, enhance Akt1 kinase activation, and downregulate activation of the p53 protein and Chk1 and Chk2 checkpoint kinases. Thus, FICZ and ITE reduce the genotoxicity of benzo(a)pyrene.


2004 ◽  
Author(s):  
Victoria P. Belancio ◽  
Prescott L. Deininger

Sign in / Sign up

Export Citation Format

Share Document