scholarly journals Comparison of Residual Stress in High Strength Steel Sample before and after Laser Welding

2018 ◽  
Vol 18 (3) ◽  
pp. 369-371 ◽  
Author(s):  
Mária Blatnická ◽  
Michal Šajgalík ◽  
Milan Sága ◽  
Miroslav Blatnický
Author(s):  
Wei Liu ◽  
Fanrong Kong ◽  
Radovan Kovacevic

The X-ray diffraction (XRD) technique is employed to measure residual stress induced by the laser welding of 6.7 mm thick ASTM A514 high strength steel plates. The distribution of residual stress in the weld bead is investigated. The results indicate that the fusion zone (FZ) has the maximum tensile stress, the transition from tensile to compressive stress tends to appear in the heat affected zone (HAZ), and the initial stress far from the weld center are not influenced by the welding process. Based on the measurement data, the influence of the laser power and the welding speed on residual stress is obtained. The magnitude of residual stress near the weld bead increases with an increase in laser power or a decrease in welding speed. The welds with incomplete penetration have a considerably lower magnitude of residual stress in FZ than ones with full penetration. Post-weld heat treatment is utilized to relieve residual stress in the weld bead. Although residual stress is not completely relieved after the heat treatment, a dramatically reduced magnitude and much more uniform distribution are achieved. In addition, the effects of the laser power, the welding speed, the laser spot diameter, and the gap between two plates on the weld shape are also studied.


2015 ◽  
Vol 42 (6) ◽  
pp. 0603007
Author(s):  
伍强 Wu Qiang ◽  
徐兰英 Xu Lanying ◽  
杨永强 Yang Yongqiang ◽  
孔春玉 Kong Chunyu

2020 ◽  
Vol 62 (9) ◽  
pp. 891-900
Author(s):  
Jonas Hensel ◽  
Arne Kromm ◽  
Thomas Nitschke-Pagel ◽  
Jonny Dixneit ◽  
Klaus Dilger

Abstract The use of low transformation temperature (LTT) filler materials represents a smart approach for increasing the fatigue strength of welded high strength steel structures apart from the usual procedures of post weld treatment. The main mechanism is based on the effect of the low start temperature of martensite formation on the stress already present during welding. Thus, compressive residual stress formed due to constrained volume expansion in connection with phase transformation become highly effective. Furthermore, the weld metal has a high hardness that can delay the formation of fatigue cracks but also leads to low toughness. Fundamental investigations on the weldability of an LTT filler material are presented in this work, including the characterization of the weld microstructure, its hardness, phase transformation temperature and mechanical properties. Special attention was applied to avoid imperfections in order to ensure a high weld quality for subsequent fatigue testing. Fatigue tests were conducted on the welded joints of the base materials S355J2 and S960QL using conventional filler materials as a comparison to the LTT filler. Butt joints were used with a variation in the weld type (DY-weld and V-weld). In addition, a component-like specimen (longitudinal stiffener) was investigated where the LTT filler material was applied as an additional layer. The joints were characterized with respect to residual stress, its stability during cyclic loading and microstructure. The results show that the application of LTT consumables leads to a significant increase in fatigue strength when basic design guidelines are followed. This enables a benefit from the lightweight design potential of high-strength steel grades.


Sign in / Sign up

Export Citation Format

Share Document