scholarly journals Paper Modeling of Wind-Solar Hybrid Power System for Off-Grid in Nepal and a Case Study

2020 ◽  
Vol 15 (3) ◽  
pp. 360-367
Author(s):  
Khagendra Bahadur Thapa ◽  
Arbin Maharjan ◽  
Kishor Kaphle ◽  
Kishor Joshi ◽  
Tara Aryal

The adaptation of renewable energy has been increasing in a very encouraging way all over the world. Among various renewable energy resources, wind and solar energy are the promising sources of alternative energy. Wind and solar photovoltaic (PV) have been employed in parallel as a hybrid system for better electricity service. This paper presents a case study and modeling of wind-solar hybrid system in Hriharpur Gadi village, Sindhuli District, Nepal. The hybrid system yields 110kWh of energy per day meeting the village’s electricity demand of 87 kWh per day. Moreover, the hybrid power system with battery storage system is modeled using MATLAB simulator. Further, improvising in the existing modeling has been presented to enhance the efficiency and effectiveness of the system.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Mustafa Engin

A sizing procedure is developed for hybrid system with the aid of mathematical models for photovoltaic cell, wind turbine, and battery that are readily present in the literature. This sizing procedure can simulate the annual performance of different kinds of photovoltaic-wind hybrid power system structures for an identified set of renewable resources, which fulfills technical limitations with the lowest energy cost. The output of the program will display the performance of the system during the year, the total cost of the system, and the best size for the PV-generator, wind generator, and battery capacity. Security lightning application is selected, whereas system performance data and environmental operating conditions are measured and stored. This hybrid system, which includes a PV, wind turbine, inverter, and a battery, was installed to supply energy to 24 W lamps, considering that the renewable energy resources of this site where the system was installed were 1700 Wh/m2/day solar radiation and 3.43 m/s yearly average wind speed. Using the measured variables, the inverter and charge regulator efficiencies were calculated as 90% and 98%, respectively, and the overall system’s electrical efficiency is calculated as 72%. Life cycle costs per kWh are found to be $0.89 and LLP = 0.0428.


2012 ◽  
Vol 608-609 ◽  
pp. 790-795
Author(s):  
Dong Lei ◽  
Lv Qin ◽  
Pu Tianjiao ◽  
Zhou Haiming

Renewable energy resources such as wind, wave, solar and biomass are becoming more important, and Wind-PV-ES hybrid power system is a promising and efficient utilization of renewable energy. Based on the sequential Monte-Carlo simulation approach, an evaluation model of Wind-PV-ES hybrid generation system is built, and storage time series model is optimized. Lastly, the effectiveness and feasibility of the proposed model is verified by a practical example, and the system impacts of PV penetration level, energy storage capacity and rated output power are illustrated.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Djohra Saheb-Koussa ◽  
Mustapha Koussa ◽  
Nourredine Said

The present work analyses the feasibility of a wind-diesel generator-battery hybrid system. The wind energy resource data are collected from the weather station at the Renewable Energy Development Center of Bouzareah in Algeria. The recorded values vary from 5.5 m/s to 7 m/s at 25 m. The hybrid system analysis has shown that for a household consuming 1,270 kWh/yr, the cost of energy is 1.205 USD/kWh and produces 2,493 kWh/yr in which 93% of electricity comes from wind energy. From this study, it is clear that the optimized hybrid system is more cost effective compared to the diesel generator system alone where the NPC and COE are equal, respectively, to 19,561 USD and 1.205 USD/kWh and 47,932 USD and 2.952 USD/kWh. The sensitivity analysis predicts that the grid extension distance varies from 1.25 to 1.85 km depending on wind speed and fuel price which indicate a positive result to implement a stand-alone hybrid power system as an alternative to grid extension. In addition to the feasibility of this system, it can reduce the emission of the CO2, SO2, and NOx, respectively, from 4758 to 147, from 9.45 to 0.294, and from 105 to 3.23 kg/yr. Investments in autonomous renewable energy systems should be considered particularly in remote areas. They can be financed in the framework of the National Energy Action Plan of Algeria.


Author(s):  
S. Sarip ◽  
C. G. Abdullah ◽  
N. Shafie ◽  
N. A. N. Mahadzir ◽  
F. Yakob ◽  
...  

Renewable energy resources are becoming inexorably in the field of generating electrical power due to the fast development of technology, given to its advantages over non-renewable energy resources. Though the source is available in enormous amount, energy produced from single renewable energy resources such as tidal current may fluctuate with the time and the hour of the day or month, depending on the tides. Thus, by having a hybrid power system consisting two or more renewable energy resources coming into play at the same time would be more reliable to support the targeted area. However, the availability of renewable energies depends on the climate change, therefore having a storage battery or backup power is often essential. In this case, the main purpose of this research is to develop an off-grid hybrid tidal current and solar power system along with backup power to support One Fathom Bank Lighthouse in Malaysia with the intention to reduce the dependency on diesel generators. Having the ability to evaluate economic and technical feasibility of power system, HOMER software is used to run simulation and analyze the best combination of components to form a hybrid power system for the lighthouse. The results are based on the best components and sizing in compliance with the load demand and diesel fuel consumption to provide a reliable and cost-effective system.


Sign in / Sign up

Export Citation Format

Share Document