scholarly journals Introduksi Gen DefH9-iaaM dan DefH9-RI-iaaM ke dalam Genom Tanaman Tomat Menggunakan Vektor Agrobacterium tumefaciens

2016 ◽  
Vol 6 (1) ◽  
pp. 18
Author(s):  
Ragapadmi S Purnamaningsih

<p>Introduction of DefH9-iaaM and DefH9-RI-iaaM Gene<br />Into Tomato Genome Using Agrobacterium tumefaciens.<br />Ragapadmi Purnamaningsih. Plant genetic improvement<br />can be conducted through genetic engineering.<br />Parthenocarpic fruit production could increase fruit<br />production and its qulities. IAA genes were introduced into<br />three tomato cultivars Ratna, Opal and LV 6117 using two<br />constract genes DefH9-iaaM and DefH9-RI-iaaM. The iaaM<br />gene is able to increase auxin biosynthesis in transgenic<br />plant cells and organs because indol-eacetamide,<br />synthesized by the product of the iaaM gene, is converted<br />either chemically or enzimatically to indole-3-acetic acid<br />(IAA), while the promotor DefH9 enable IAA gene expressed<br />specifically in the ovules. The objectives of this experiment<br />was to identify gene introduction into plant genom of three<br />tomato cultivars. The factors tested were two constract of<br />IAA genes (DefH9-iaaM or DefH9-RI-iaaM), tomato cultivars<br />(Ratna, Opal, and LV 6117) and time of explant inoculation<br />(5, 15, 30 minute). The result showed that the best time<br />inoculation was 5 minute. Otherwise three tomato cultivars<br />response better to DefH9-RI-iaaM than DefH9-iaaM. The total<br />efficiency of regeneration and total efficiency of<br />transformation of both genes were 25.38% and 20.32%. PCR<br />analysis showed that 10 plant have positive PCR, were 1<br />plant carried (Opal) DefH9-iaaM gene and 9 plant (Ratna,<br />Opal, LV 6117) carried DefH9-RI-iaaM gene.</p>

2008 ◽  
Vol 136 ◽  
pp. S65-S66
Author(s):  
S. Hsbib A. Naqvi ◽  
M. Umar Dahot ◽  
Humera ◽  
Qurat-ul-Ain

Nature ◽  
1956 ◽  
Vol 177 (4510) ◽  
pp. 658-659 ◽  
Author(s):  
LEONORA REINHOLD ◽  
R. G. POWELL

2001 ◽  
Vol 14 (3) ◽  
pp. 405-411 ◽  
Author(s):  
Léon Otten ◽  
Anne Helfer

The iaaM gene from different plant-associated bacteria encodes a tryptophan monooxygenase (IaaM) that catalyzes the synthesis of indole-3-acetamide (IAM), a precursor of indole-3-acetic acid (IAA). Unlike the IaaM proteins from other bacteria, Agrobacterium spp. T-DNA-encoded IaaM proteins carry a 200 amino acid N-terminal extension with low homology to various members of the RolB protein family. This family is composed of 18 highly divergent T-DNA-encoded proteins, the basic functions of which are still largely undetermined. Deletion of the 5′rolB-like extension of the iaaM gene from Agrobacterium tumefaciens strain Ach5 did not lead to a reduction in IAM synthesis in plants. When expressed in tobacco, the rolB-like fragment did not affect growth or morphology. An iaaM homolog (A4-orf8) from the TL-DNA of Agrobacterium rhizogenes strain A4 also was investigated. Neither the full-size A4-orf8 gene nor the 5′-truncated form induced detectable IAM synthesis. Plants expressing the rolB-like part of the A4-orf8 gene, however, were dwarfed and mottled to various extents and synthesized abnormally high amounts of glucose, fructose, sucrose, and starch.


Sign in / Sign up

Export Citation Format

Share Document