A Study of Seismic Design Standards for Brick Veneers Applicable to Domestic Small Wooden Structure

Author(s):  
Yeong-Ju Lee ◽  
Hyun-Geun Park
2021 ◽  
Vol 885 ◽  
pp. 127-132
Author(s):  
Sarmad Shakeel ◽  
Alessia Campiche

The current edition of Eurocode 8 does not cover the design of the Cold-Formed steel (CFS) building structures under the seismic design condition. As part of the revision process of Euro-code 8 to reflect the outcomes of extensive research carried out in the past decade, University of Naples “Federico II” is involved in the validation of existing seismic design criteria and development of new rules for the design of CFS systems. In particular, different types of Lateral Force Resisting System (LFRS) are analyzed that can be listed in the second generation of Eurocode 8. The investigated LFRS’s include CFS strap braced walls and CFS shear walls with steel sheets, wood, or gypsum sheathing. This paper provides the background information on the research works and the reference design standards, already being used in some parts of the world, which formed the basis of design criteria for these LFRS systems. The design criteria for the LFRS-s common to CFS buildings would include rules necessary for ensuring the dissipative behavior, appropriate values of the behavior factor, guidelines to predict the design strength, geometrical and mechanical limitations.


2021 ◽  
Vol 11 (5) ◽  
pp. 1986
Author(s):  
Jae-Sub Lee ◽  
Dam-I Jung ◽  
Doo-Yong Lee ◽  
Bong-Ho Cho

In Korea, the earthquakes in Gyeongju (2016) and Pohang (2017) have led to increased interest in the seismic design of nonstructural elements. Among these, the suspended ceiling can cause personal injury and property damage. In addition, most suspended ceilings that are used in Korea neither have seismic design details nor meet the current seismic design standards. There are two seismic design methods for suspended ceilings using a perimeter clip and a brace. In the United States and Japan, seismic design of ceilings is typically used, but the concepts of applying and installing braces are different. This is because the typical ceiling systems are different in the United States and Japan. In this study, a brace-applied ceiling system that is suitable for a suspended ceiling with a steel panel was applied in the indirect suspended ceiling mainly used in Korea. In addition, the seismic performance was verified through a shaking table test. All the specimens were applied with anti-falling clips that are designed to prevent the panels from falling, and they satisfy KDS 41 17 00, which is a Korean seismic design life safety standard. Without considering these factors, the performance level is lower than a nonseismic designed ceiling, which is not properly designed or constructed.


2019 ◽  
Vol 11 (2) ◽  
Author(s):  
Tiago Ribeiro ◽  
Ana Sousa

Throughout the last two decades, seismic design standards evolved to ever more comprehensive and detailed prescriptions, stressing out the need for design methods that deal with earthquake effects not as actions, but as a design philosophy. The Eurocode 8 adoption as national law throughout the European Union countries and informally in many parts of Africa, Asia and Latin America is the pretext for the current study. It aims to provide some guidance to the seismic design of steel structures as well as to the Eurocode 8 implementation by the designers.Some lines on the preliminary design of structural systems were written based on several real cases of structures designed taking into account the seismic action. Such a content is, usually, relevant in any design guide, given its value in enhancing the design technical and economical content. However, it is now of utter significance at the current context as an essential tool to facilitate the safety checking of several code requirements.Some of the Eurocode 8 prescriptions are then decoded, explained and justified based on the supportive bibliography. The information is subsequently ordered as a design guide, where some procedures are proposed to cope with the code interrelated prescriptions and one structural solution is proposed in order to overcome a design challenge while complying with the code.One last but not less relevant addressed issue is the fact that some Eurocode 8 prescriptions may be reviewed, in the eyes of a designer, given its practical outcome. Such issues are identified, explained and some slight code adjustments are suggested.


2012 ◽  
Vol 446-449 ◽  
pp. 86-89
Author(s):  
Ji Zhou ◽  
Jing He ◽  
Yan Hui Zhang ◽  
Cun Lei Zhou

The paper is special for wooden structure housing in villages and towns, and taken appropriate reinforced measures to achieve the standard of seismic design of no collapse in big or medium earthquakes. The 1/2 scale model that loaded horizontally on the shaking table was designed to observe its damage characteristics and make an analysis of its destruction. And the effectiveness of the reinforced method will be assessed.


Author(s):  
Christian Haussner ◽  
Takayuki Omori ◽  
Nobuyuki Matsumoto

<p>This paper introduces the seismic design conducted for the railway viaducts in a highly seismic region in Metro Manila, Philippines, in accordance with the local bridge seismic design standard (DPWH-BSDS, 2013), AASHTO Guide Specifications for Load Resistance Factor Design Seismic Bridge Design (LRFD-S) and the Japanese Seismic Design Standard for Railway Structures and Commentary (JDSRS) for making reference to the anti-derailment check under Level 1 Earthquakes (1:100 return period).</p><p>The authors concluded that for level 1 earthquakes the seismic design for short piers (h&lt;10m) and piers located in stiff soils, the seismic design was governed by the DPWH-BSDS and AASHTO LRFD-S due to its larger seismic coefficient for structures with short natural periods. Therefore, the initial structural sizes, reinforcement arrangement and number of piles did not need to be modified. On the other hand however, tall piers (h&gt;10m) located in soft soils, the design is governed by the JDSRS due to its stipulated larger seismic coefficients for structures with a longer natural periods. In this regard, in order to limit the transverse natural period requirements of the JDSRS as part of the anti-derailment check, the sub-structural members needed to be increased in size by approximately 20% - 50%, re-arrange the pier steel reinforcement, and to increase the number of bored piles.</p>


Sign in / Sign up

Export Citation Format

Share Document