scholarly journals Composition dependence of absorption edge energy of borate glasses containing a large amount of Bi2O3

2019 ◽  
Vol 127 (8) ◽  
pp. 538-544 ◽  
Author(s):  
Kohei FUKUMI ◽  
Naoyuki KITAMURA ◽  
Hiromitsu KOZUKA
1964 ◽  
Vol 8 ◽  
pp. 118-133 ◽  
Author(s):  
William Parrish

AbstractEscape peaks occur when the incident X-ray quantum, energy exceeds the absorption edge energy of the detector element and the resulting X-ray fluorescence is lost from the detector. The most common escape peaks result from 1 K-fluorescence in NaI-scintillation counters and Xe K-, Xe L-, and Kr K-fluorescence in proportional counters. The average pulse amplitude of the escape peak is proportional to the difference of the Energies of the incident and fluorescent X-rays. If the intensity of the escape peak is high as in the case of Mo Kα and a kryptoopreportional counter, and the lower level of the pulse height analyzer is raised to reject the escape peak, the quantum counting efficiency may be reduced by a factor of two. When the pulse height analyzer is set for characteristic incident radiation, escape peaks appear in powder patterns at small diffraction angles. These broad low-intensity peaks are often mistakenly identified as resulting from misalignment, scattering, etc. Each powder reflection can produce its own escape peak which occurs at an angle slightly smaller than the absorption edge of the detector element. In a silicon powder pattern the three strongest reflections produce three resolved escape peaks whose peak intensities are about 4% of their corresponding Cu Kα peaks when the X-ray tube is operated at 50 kV. The escape peak intensities decrease with decreasing X-ray tube voltage and disappear when the voltage is lower than the absorption edge energy of the detector element. Absorption edge peaks observed without the upper level of the pulse height analyzer are similar in appearance, intensity, and diffraction angle to the escape peaks. In complex powder patterns the escape peak pattern is unresolved and may produce a number of very broad peaks.


2010 ◽  
Vol 13 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Emerson Aparecido Floriano ◽  
Luis Vicente de Andrade Scalvi ◽  
Julio Ricardo Sambrano ◽  
Viviany Geraldo

2010 ◽  
Vol 49 (8) ◽  
pp. 082601 ◽  
Author(s):  
Naoyuki Kitamura ◽  
Kentarou Ohno ◽  
Kohei Fukumi ◽  
Junichi Nakamura ◽  
Tatsuo Hidaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document