Diagenesis and Reservoir-Quality Evolution of Incised-Valley Sandstones: Evidence from the Abu Madi Gas Reservoirs (Upper Miocene), the Nile Delta Basin, Egypt

2005 ◽  
Vol 75 (4) ◽  
pp. 572-584 ◽  
Author(s):  
A. M. Salem ◽  
J.M. Ketzer ◽  
S. Morad ◽  
R. R. Rizk ◽  
I.S. Al-Aasm
2021 ◽  
Vol 11 (4) ◽  
pp. 1643-1666
Author(s):  
Ahmed M. Elatrash ◽  
Mohammad A. Abdelwahhab ◽  
Hamdalla A. Wanas ◽  
Samir I. El-Naggar ◽  
Hasan M. Elshayeb

AbstractThe quality of a hydrocarbon reservoir is strongly controlled by the depositional and diagenetic facies nature of the given rock. Therefore, building a precise geological/depositional model of the reservoir rock is critical to reducing risks while exploring for petroleum. Ultimate reservoir characterization for constructing an adequate geological model is still challenging due to the in general insufficiency of data; particularly integrating them through combined approaches. In this paper, we integrated seismic geomorphology, sequence stratigraphy, and sedimentology, to efficiently characterize the Upper Miocene, incised-valley fill, Abu Madi Formation at South Mansoura Area (Onshore Nile Delta, Egypt). Abu Madi Formation, in the study area, is a SW-NE trending reservoir fairway consisting of alternative sequences of shales and channel-fill sandstones, of the Messinian age, that were built as a result of the River Nile sediment supply upon the Messinian Salinity Crisis. Hence, it comprises a range of continental to coastal depositional facies. We utilized dataset including seismic data, complete set of well logs, and core samples. We performed seismic attribute analysis, particularly spectral decomposition, over stratal slices to outline the geometry of the incised-valley fill. Moreover, well log analysis was done to distinguish different facies and lithofacies associations, and define their paleo-depositional environments; a preceding further look was given to the well log-based sequence stratigraphic setting as well. Furthermore, mineralogical composition and post-depositional diagenesis were identified performing petrographical analysis of some thin sections adopted from the core samples. A linkage between such approaches, performed in this study, and their impact on reservoir quality determination was aimed to shed light on a successful integrated reservoir characterization, capable of giving a robust insight into the depositional facies, and the associated petroleum potential. The results show that MSC Abu Madi Formation constitutes a third-order depositional sequence of fluvial to estuarine units, infilling the Eonile-canyon, with five sedimentary facies associations; overbank mud, fluvial channel complex, estuarine mud, tidal channels, and tidal bars; trending SW-NE with a Y-shape channel geometry. The fluvial facies association (zone 1 and 3) enriches coarse-grained sandstones, deposited in subaerial setting, with significantly higher reservoir quality, acting as the best reservoir facies of the area. Although the dissolution of detrital components, mainly feldspars, enhanced a secondary porosity, improving reservoir quality of MSC Abu Madi sediments, continental fluvial channel facies represent the main fluid flow conduits, where marine influence is limited.


2021 ◽  
Author(s):  
Mohammad Al-Kadem ◽  
Mohammad Gomaa ◽  
Karam Al Yateem ◽  
Abdulmonam Al Maghlouth

Abstract The Cement Packer approach has been successfully implemented to pursue and monetize minor gas reservoirs of poorer quality. Due to its critical role in power supply to meet the nation's needs, license to operate gas fields oftentimes come with contractual obligations to deliver a certain threshold of gas capacity. The cement packer method is a cheaper alternative to workovers that enables operators to build gas capacity by monetizing minor gas reservoirs at lower cost. Group 1 reservoirs are the shallowest hydrocarbon bearing sand with poorer reservoir quality and relatively thin reservoirs. The behind-casing-opportunities in Minor Group-1 reservoirs previously required a relatively costly pull-tubing rig workover to monetize the reservoir. Opportunities in two wells were optimized from pull –tubing rig workovers to a non-rig program by implementing Cement Packer applications. The tubing was punched to create tubing-casing communication and cement was subsequently pumped through the tubing and into the casing. The hardened cement then acted as a barrier to satisfy operating guidelines. The reservoir was then additionally perforated, flow tested and successfully monetized at a lower cost. Tubing and casing integrity tests prior to well entry demonstrated good tubing and casing integrity. This is critical to ensure that cement will only flow into the casing where the tubing was punched. Once the cement hardened, pressure test from the tubing and from the casing indicated that the cement has effectively isolated both tubulars. Subsequent Cement Bond Log and Ultrasonic Imaging Tool showed fair to good cement above the target perforation depth. These data supported the fact that the cement packer was solid and the reservoir was ready for additional perforation. Taking into account the reservoir quality, it was decided to perforate the reservoir twice with the biggest gun available to ensure the lowest skin possible. Post perforation, there was a sharp increase in the tubing pressure indicating pressure influx from the reservoir. Despite that, casing pressure remained low, confirming no communication and thus the success of the cement packer.The well was later able to unload naturally due to its high reservoir pressure, confirming the producibility of the reservoirs and unlocking similar opportunities in other wells. Additionally, the cement packer approach delivered tremendous cost savings between $6 – 8 mil per well. Besides confirming the reservoirs' producibility,the success also unlocked additional shallow gas behind casing opportunities in the area.This method will now be the first-choice option to monetize any hydrocarbon resources in reservoirs located above the top packer.


2020 ◽  
Vol 79 (18) ◽  
Author(s):  
Matthias Heidsiek ◽  
Christoph Butscher ◽  
Philipp Blum ◽  
Cornelius Fischer

Abstract The fluvial-aeolian Upper Rotliegend sandstones from the Bebertal outcrop (Flechtingen High, Germany) are the famous reservoir analog for the deeply buried Upper Rotliegend gas reservoirs of the Southern Permian Basin. While most diagenetic and reservoir quality investigations are conducted on a meter scale, there is an emerging consensus that significant reservoir heterogeneity is inherited from diagenetic complexity at smaller scales. In this study, we utilize information about diagenetic products and processes at the pore- and plug-scale and analyze their impact on the heterogeneity of porosity, permeability, and cement patterns. Eodiagenetic poikilitic calcite cements, illite/iron oxide grain coatings, and the amount of infiltrated clay are responsible for mm- to cm-scale reservoir heterogeneities in the Parchim formation of the Upper Rotliegend sandstones. Using the Petrel E&P software platform, spatial fluctuations and spatial variations of permeability, porosity, and calcite cements are modeled and compared, offering opportunities for predicting small-scale reservoir rock properties based on diagenetic constraints.


Author(s):  
Mahmoud Leila ◽  
Ali Eslam ◽  
Asmaa Abu El-Magd ◽  
Lobna Alwaan ◽  
Ahmed Elgendy

Abstract The Messinian Abu Madi Formation represents the most prospective reservoir target in the Nile Delta. Hydrocarbon exploration endeavors in Nile Delta over the last few decades highlighted some uncertainties related to the predictability and distribution of the Abu Madi best reservoir quality facies. Therefore, this study aims at delineating the factors controlling the petrophysical heterogeneity of the Abu Madi reservoir facies in Faraskour Field, northeastern onshore part of the Nile Delta. This work provides the very first investigation on the reservoir properties of Abu Madi succession outside the main canyon system. In the study area, Abu Madi reservoir is subdivided into two sandstone units (lower fluvial and upper estuarine). Compositionally, quartzose sandstones (quartz > 65%) are more common in the fluvial unit, whereas the estuarine sandstones are often argillaceous (clays > 15%) and glauconitic (glauconite > 10%). The sandstones were classified into four reservoir rock types (RRTI, RRTII, RRTIII, and RRTIV) having different petrophysical characteristics and fluid flow properties. RRTI hosts the quartzose sandstones characterized by mega pore spaces (R35 > 45 µm) and a very well-connected, isotropic pore system. On the other side, RRTIV constitutes the lowest reservoir quality argillaceous sandstones containing meso- and micro-sized pores (R35 > 5 µm) and a pore system dominated by dead ends. Irreducible water saturation increases steadily from RRTI (Swir ~ 5%) to RRTIV (Swir > 20%). Additionally, the gas–water two-phase co-flowing characteristics decrease significantly from RRTI to RRTIV facies. The gaseous hydrocarbons will be able to flow in RRTI facies even at water saturation values exceeding 90%. On the other side, the gas will not be able to displace water in RRTIV sandstones even at water saturation values as low as 40%. Similarly, the influence of confining pressure on porosity and permeability destruction significantly increases from RRTI to RRTIV. Accordingly, RRTI facies are the best reservoir targets and have high potentiality for primary porosity preservation.


2015 ◽  
Vol 9 (1) ◽  
Author(s):  
Mahmoud Leila ◽  
Mahmoud Ahmed Kora ◽  
Mohamed Awad Ahmed ◽  
Abdelhakim Ghanem

Sign in / Sign up

Export Citation Format

Share Document