integrity tests
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 31)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Peter in 't Panhuis ◽  
Sandeep Mahajan ◽  
Cindy Prin ◽  
Ahmed Al Ajmi

Abstract Formation Integrity Tests (FIT) or Leak-Off Tests (LOT) are common techniques to reduce the uncertainty in Fracture Gradient (FG) prediction for well planning, but are usually performed at the casing shoe. This article will discuss the first examples of open-hole LOT and FIT in Petroleum Development Oman (PDO), targeting depleted formations in water injector or oil producer wells. The data was used to justify continued drilling of slim wells with two casing strings, where otherwise three casing strings would be required, provided dynamic wellbore strengthening is applied. In addition, the concept of static wellbore strengthening was also trialed for the first time in Oman, using the hesitation squeeze testing procedure, by which the effective leak-off pressure was incrementally increased to match the maximum ECD required for cementing.


2021 ◽  
Vol 25 (4) ◽  
pp. 217-223
Author(s):  
Fulya Ozer ◽  
Haluk Yavuz ◽  
Ismail Yilmaz ◽  
Levent N. Ozluoglu

Background and Objectives: In cochlear implant (CI) surgery, the results and causes of revision and reimplantation may guide surgeons in establishing surgical protocols for revision surgery with safe audiological outcomes. The aim of this study was to review our experience in terms of etiology, surgical strategy, and hearing outcomes in pediatric patients who underwent CI removal and reimplantation.Subjects and Methods: All patients received implants of the same brand. Pre and postoperative Categories of Auditory Performance score and aided free-field pure tone audiometry thresholds were noted. In vivo integrity tests were performed for each patient and the results of ex vivo tests of each implant were obtained from manufacturer.Results: A total of 149 CIs were placed in 121 patients aged <18 years. The revision rate in children was 6.7% (10/121 children). Six patients had a history of head injury leading to a hard failure. The causes of reimplantation in others were soft failure (n=1), electrode migration (n=1), infection (n=1), and other (n=1). All patients showed better or similar postreimplantation audiological performance compared with pre-reimplantation results.Conclusions: It is very important to provide a safe school and home environment and educate the family for reducing reimplantation due to trauma. Especially for active children, psychiatric consultation should be continued postoperatively.


2021 ◽  
Author(s):  
Batakrishna Mandal ◽  
Xiang Wu ◽  
Sadig Huseynov ◽  
Adesoji Adedamola ◽  
Teles Huanga ◽  
...  

Abstract While applying acoustics is not a new science, inherent uncertainties with these techniques are still not addressing challenges that limit confidence in well integrity programs. The Caspian region's significant challenges for cement evaluations include heavy mud and thick casing, as well as the high-pressure/high-temperature (HP/HT) nature of gas condensate wells, which reduces the contrast in acoustic impedance. Accordingly, difficulties have remained in the interpretation of conventional cement bond logs, which has led many operators to be suspicious of well integrity technologies. This paper focuses on the application of ultrasonic cement evaluation technology in the Caspian Sea, and compares results between advanced ultrasonic applications and traditional cement bond logs in heavy mud. The workflow is presented to integrate the advancement of this technology and to eliminate the uncertainties in well integrity analysis. Increasing confidence for further drilling of a high-pressure gas reservoir has been achieved by combining these various measurements that enable a definitive analysis of zonal isolation. The main objective of this well assurance program was to ensure zonal isolation and shoe integrity in order to drill ahead to perform formation integrity tests (FITs). However, obtaining high-resolution cement data in heavy, 2.16-sg, oil-based mud (OBM) was the biggest concern due to the limitations of standard ultrasonic technology. The wide disparity in acoustic impedance, combined with the low contrast between heavy mud and the cemented section, makes evaluation of cement quality and zonal isolation doubtful. Although well conditions challenged the standard measurements, the cement evaluation objective was achieved with the new technology by ensuring 360° azimuthal coverage in permeable sand zones capable of unwanted hydrocarbon production – i.e., preventing sustained casing pressure (SCP). Moreover, a strong and continuous 40-m cement bond prevented crossflow from charging zones through the wellbore and also acted as a barrier against corrosion. Enhancement of pulse-echo technology has proved that it can be applied in a highly attenuative environment to achieve high-fidelity data. Highly acoustic attenuative mud is a major challenge for acoustic ultrasonic technology to achieve a quality answer product for well integrity. To mitigate this problem, a new tool was developed with a highly sensitive low-noise transducer, and with special programmable (both voltage and frequency) firing circuitry, to enhance the transducer signal at the resonance frequency of the casing. The various features of the processing algorithm are also improved, based on the numerous laboratory and field measurements.


2021 ◽  
Author(s):  
Reza Majidi ◽  
Abbas Abbasov ◽  
Elshan M. Aliyev ◽  
Firangiz Akhundova ◽  
Joanna Mckidd

Abstract The Azeri-Chirag-Gunashli (ACG) field, a tightly folded anticline structure, located offshore Azerbaijan in the south Caspian basin, is one of the most tectonically active regions of the world. Understanding the stress state across the ACG structure is a key to successful development of the field by optimizing well placement during drilling, completion, and depletion/injection phases. This article summarizes the results of studies undertaken on the state of the stress in ACG field. It encompasses the field-wide overview of stresses from a structural standpoint, the compilation of drilling and completion events, for instance, induced fracture during lost circulation events, and Formation Pressure Integrity Tests (FPIT) as well as analysis of wellbore breakout from variety of sources including borehole image data and caliper logs that were used to infer the magnitude and orientation of far-field stresses. Key outcomes of this study are the stress ratio distribution maps and stress orientation maps across the structure, based on the magnitude and orientations of stresses that were inferred from drilling events and wellbore breakouts. Results of this analysis show that magnitude and orientation of stresses vary across the structure both laterally and vertically. Minimum principal stress (Shmin) tends to increase from the crest toward the flanks. The maximum principal stress (SHmax) orientation is found to be predominantly sub-perpendicular to the strike of the anticline structure (60°-80° N), influenced by the reginal tectonic stresses. Moreover, stress rotation from sub-perpendicular to sub-parallel to the anticline is observed over some parts of the central and crestal areas, indicating that stresses are less compressional at the center and crest of the Azeri anticline. Local variability is possibly due to proximity to geological features such as mud volcanos, faults, and high deformation areas. The relative magnitude of stresses found in ACG, suggests a predominantly strike-slip faulting regime (where SHmax is the greatest of the three principal stresses) particularly, at the flanks and noses of the structure.


2021 ◽  
Author(s):  
Muhammad Abdulhadi ◽  
Evelyn Ling ◽  
Ahmad Uzair Zubbir ◽  
Hani Mohd Said ◽  
Rohani Elias ◽  
...  

Abstract The Cement Packer approach has been successfully implemented in ExxonMobil Exploration & Production Malaysia Inc. (EMEPMI) to further develop minor gas reservoirs. The reservoir of interest is of relatively poor quality and has not been tested, thus making conventional development potentially not cost effective. Several viable approaches were identified and assessed to appraise and develop the reservoir. The cement packer method, which requires relatively minimal investment was then selected as being the most suitable in pursuing these behind casing opportunities. Group 1 sands in Field A are the shallowest hydrocarbon reservoirs which are relatively thin and have low porosity and permeability. The existing completions are currently producing from deeper reservoirs, with the top packer located below the Group 1 sands. Developing the opportunities behind casing in these sands using the conventional pull tubing workover approach may be cost prohibitive. The cement packer approach, where the tubing was punched to create tubing-casing communication and cement was subsequently pumped through the tubing and into the casing, was identified as one of the potential cost effective solution. The hardened cement then acts as a barrier to satisfy operating guidelines. The reservoir was then additionally perforated, flow tested and successfully monetized. Prior to well entry, tubing and casing integrity tests were performed to confirm the integrity. This step is critical to ensure that cement will only flow into the casing where the tubing was punched. Once the cement is hardened, pressure test from the tubing and from the casing indicated the cement has effectively isolated both tubulars. Subsequent Cement Bond Log and Ultrasonic Imaging Tool also displayed nearly 120m of fair to good cement above the target perforation depth. These data served as basis and proof that the cement packer was solid and the reservoir was ready for additional perforation. Taking into account the relatively poor reservoir quality, it was decided to perforate the reservoir twice with the biggest gun available to increase the probability of maximum reservoir contact while minimizing skin. Post perforation, a sharp increase in the tubing pressure was observed, indicating pressure influx from the reservoir. The casing pressure however, remained low, confirming no tubing-casing communication and thus the success of the cement packer. The well was later able to unload naturally from the high reservoir pressure. The work program also managed to confirm the producibility of the reservoirs. This successful approach has opened up potential application to similar stranded reservoirs behind casing.


2021 ◽  
Author(s):  
Mohammad Al-Kadem ◽  
Mohammad Gomaa ◽  
Karam Al Yateem ◽  
Abdulmonam Al Maghlouth

Abstract The Cement Packer approach has been successfully implemented to pursue and monetize minor gas reservoirs of poorer quality. Due to its critical role in power supply to meet the nation's needs, license to operate gas fields oftentimes come with contractual obligations to deliver a certain threshold of gas capacity. The cement packer method is a cheaper alternative to workovers that enables operators to build gas capacity by monetizing minor gas reservoirs at lower cost. Group 1 reservoirs are the shallowest hydrocarbon bearing sand with poorer reservoir quality and relatively thin reservoirs. The behind-casing-opportunities in Minor Group-1 reservoirs previously required a relatively costly pull-tubing rig workover to monetize the reservoir. Opportunities in two wells were optimized from pull –tubing rig workovers to a non-rig program by implementing Cement Packer applications. The tubing was punched to create tubing-casing communication and cement was subsequently pumped through the tubing and into the casing. The hardened cement then acted as a barrier to satisfy operating guidelines. The reservoir was then additionally perforated, flow tested and successfully monetized at a lower cost. Tubing and casing integrity tests prior to well entry demonstrated good tubing and casing integrity. This is critical to ensure that cement will only flow into the casing where the tubing was punched. Once the cement hardened, pressure test from the tubing and from the casing indicated that the cement has effectively isolated both tubulars. Subsequent Cement Bond Log and Ultrasonic Imaging Tool showed fair to good cement above the target perforation depth. These data supported the fact that the cement packer was solid and the reservoir was ready for additional perforation. Taking into account the reservoir quality, it was decided to perforate the reservoir twice with the biggest gun available to ensure the lowest skin possible. Post perforation, there was a sharp increase in the tubing pressure indicating pressure influx from the reservoir. Despite that, casing pressure remained low, confirming no communication and thus the success of the cement packer.The well was later able to unload naturally due to its high reservoir pressure, confirming the producibility of the reservoirs and unlocking similar opportunities in other wells. Additionally, the cement packer approach delivered tremendous cost savings between $6 – 8 mil per well. Besides confirming the reservoirs' producibility,the success also unlocked additional shallow gas behind casing opportunities in the area.This method will now be the first-choice option to monetize any hydrocarbon resources in reservoirs located above the top packer.


2021 ◽  
Author(s):  
Muhammad Abdulhadi ◽  
Hani Mohd Said ◽  
Ahmad Uzair Zubbir ◽  
Evelyn Ling ◽  
Mohamed Azlin Mohd Nasir ◽  
...  

Abstract The Cement Packer approach has been successfully implemented to pursue and monetize minor gas reservoirs of poorer quality. Due to its critical role in power supply to meet the nation's needs, license to operate gas fields oftentimes come with contractual obligations to deliver a certain threshold of gas capacity. The cement packer method is a cheaper alternative to workovers that enables operators to build gas capacity by monetizing minor gas reservoirs at lower cost. Group 1 reservoirs are the shallowest hydrocarbon bearing sand with poorer reservoir quality and relatively thin reservoirs. The behind-casing-opportunities in Minor Group-1 reservoirs previously required a relatively costly pull-tubing rig workover to monetize the reservoir. Opportunities in two wells were optimized from pull –tubing rig workovers to a non-rig program by implementing Cement Packer applications. The tubing was punched to create tubing-casing communication and cement was subsequently pumped through the tubing and into the casing. The hardened cement then acted as a barrier to satisfy operating guidelines. The reservoir was then additionally perforated, flow tested and successfully monetized at a lower cost. Tubing and casing integrity tests prior to well entry demonstrated good tubing and casing integrity. This is critical to ensure that cement will only flow into the casing where the tubing was punched. Once the cement hardened, pressure test from the tubing and from the casing indicated that the cement has effectively isolated both tubulars. Subsequent Cement Bond Log and Ultrasonic Imaging Tool showed fair to good cement above the target perforation depth. These data supported the fact that the cement packer was solid and the reservoir was ready for additional perforation. Taking into account the reservoir quality, it was decided to perforate the reservoir twice with the biggest gun available to ensure the lowest skin possible. Post perforation, there was a sharp increase in the tubing pressure indicating pressure influx from the reservoir. Despite that, casing pressure remained low, confirming no communication and thus the success of the cement packer.The well was later able to unload naturally due to its high reservoir pressure, confirming the producibility of the reservoirs and unlocking similar opportunities in other wells. Additionally, the cement packer approach delivered tremendous cost savings between $6 – 8 mil per well. Besides confirming the reservoirs' producibility,the success also unlocked additional shallow gas behind casing opportunities in the area.This method will now be the first-choice option to monetize any hydrocarbon resources in reservoirs located above the top packer.


2021 ◽  
Author(s):  
Nathan Tuckwell ◽  
Akram Nabiyev ◽  
Martyn Parker ◽  
Isabel Poletzky

Abstract This paper details how a major international operator was able to work directly with a Managed Pressure Drilling (MPD) service provider during the global pandemic to mobilize to a deep water Tension Leg Platform (TLP) in the Gulf of Mexico in fewer than four weeks from notification to being operationally ready. Apart from the time crunch, the challenging part was achieving it virtually without face-to-face meetings or rig visit. The legacy hydraulically controlled MPD system used on the previous well had proven to be very challenging. It could not provide the desired precise control to maintain the annular pressures within the operational window, thus necessitating a change. Furthermore, the deck space limitations had significantly restricted the equipment that could be used to gain accurate pressure control. Despite COVID, all the planning stages were performed, albeit virtually, and a compact modular electric servo choke MPD system was deployed, installed, and commissioned within four weeks from the initial discussions. The new MPD system, which replaced the legacy system, was successfully utilized on this project executing the constant bottom hole pressure (CBHP) MPD variations. It achieved bottom hole pressure (BHP) control within a 0.1 - 0.2 ppg operational window. This paper will discuss how, operationally, this 1-man per shift MPD crew communicated with the rig and operator personnel, delivered accurate pressure control on connections, performed dynamic formation integrity tests (FITs), delivering flawless execution, and meeting the client's expectations. Global pandemic made big changes in our work, learning and interact with people with social distancing.


2021 ◽  
Vol 9 (2) ◽  
pp. 55-63
Author(s):  
A. Fitrawanti ◽  
R. Dewanti-Hariyadi ◽  
N. Wulandari

Food fraud is one of the risks in the supply chain globalization. A complex and long supply chain withdifferent locations, cultures, business ethics, policies and surveillance systems are the contributing factorsto food fraud. This study aims to identify food fraud vulnerability factors in milk powder producers. Itwas conducted in two companies which uses powder and liquid milk as the raw materials which istypical in Indonesian powdered milk industry. The study steps consist of respondents determination,data collection and analysis, formulating mitigation strategies. The respondents were company’s headof departments and a government officer of the National Agency for Drug and Food. Data collectionand analysis were carried out with the Safe Supply Affordable Food Everywhere (SSAFE) tool, whilemitigation strategies was formulated through Focus Group Discussion. The results show that vulnerabilityto food fraud rooted from the opportunity factor, namely the easiness and availability of technologyto commit fraud, motivational factor namely the level of corruption and regulatory differences thataffect prices, control measures factors due to lack of supervision, employee integrity tests and preventionguidelines. Internally improving control measures within the company and guideline prevention fromthe government were mitigation measures to be done.


2021 ◽  
Author(s):  
Babar Kamal ◽  
Emil Stoian ◽  
Graeme MacFarlane

Abstract This paper reviews the recently concluded successful application of a Managed Pressure Drilling (MPD) system on a High-Pressure High-Temperature (HPHT) well with Narrow Mud Weight Window (NMWW) in the UK sector in the Central North Sea. Well-A was drilled with the Constant Bottom Hole Pressure (CBHP) version of MPD with a mud weight statically underbalanced and dynamically close to formation pore pressure. Whilst drilling the 12-1/2" section of the well with statically under-balanced mud weight, to minimize the overbalance across the open hole, an influx was detected by the MPD system as a result of drilling into a pressure ramp. The MPD system allowed surface back pressure to be applied and the primary barrier of the well re-established, resulting in a minimal influx volume of 0.06 m3 and the ability to circulate the influx out by keeping the Stand Pipe Pressure (SPP) constant while adjusting Surface Back Pressure (SBP) through the MPD chokes in less than 4 hours with a single circulation. After reaching the 12-1/2" section TD, only ~0.025sg (175 psi) Equivalent Mud Weight (EMW) window was available to displace the well and pull out of hole (POOH) the bottom hole assembly (BHA) therefore, 3 × LCM pills of different concentrations were pumped and squeezed into the formation with SBP to enhance the NMWW to 0.035sg EMW (245 psi) deemed necessary to kill the well and retrieve BHA. MPD allowed efficient cement squeeze operations to be performed in order to cement the fractured/weak zones which sufficiently strengthened the well bore to continue drilling. A series of Dynamic Pore Pressure and Formation Integrity Tests (DPPT and DFIT) were performed to evaluate the formation strength post remedial work and to define the updated MMW. Despite the challenges, the MPD system enabled the delivery of a conventionally un-drillable well to target depth (TD) without any unplanned increase/decrease in mud weight or any costly contingency architecture operations, whilst decreasing the amount of NPT (Non Productive Time) and ILT (Invisible Lost Time) incurred. This paper discusses the planning, design, and execution of MPD operations on the Infill Well-A, the results achieved, and lessons learned that recommend using the technology both as an enabler and performance enhancer.


Sign in / Sign up

Export Citation Format

Share Document