Petrological and Geochemical Constraints On Provenance, Paleoweathering, and Tectonic Setting of the Neoproterozoic Sedimentary Basin In the Eastern Jiangnan Orogen, South China

2013 ◽  
Vol 83 (11) ◽  
pp. 974-993 ◽  
Author(s):  
W. Wang ◽  
M.-F. Zhou
2021 ◽  
Vol 583 ◽  
pp. 110642
Author(s):  
Tianjia Liu ◽  
Zhentao Wang ◽  
Xunlian Wang ◽  
Xifang Liu ◽  
Pengcheng Ju ◽  
...  

1992 ◽  
Vol 6 ◽  
pp. 155-155
Author(s):  
Kotaro Kamada

Before opening of the Japan Sea, the Japanese islands were attached to the eastern margin of the Asian continent. The Southern Kitakami Belt is regarded as a micro-continent in an accretional complex of the islands, that accreted before the Early Cretaceous. But its tectonic setting and location between the belt and the Asian continent is still an unresolved argument.Permo-Triassic sequences in the Southern Kitakami Belt are composed of shallow to off-shore deposits. These deposits are composed of clastics, carbonates with volcaniclastics. But there was no volcanic activity in the belt in the Middle to Late Permian. From the viewpoint of the sedimentary character and history, the Middle Permian to Middle Triassic sequences differ from their previous and their following successions in the belt. And the sedimentary basin of Middle Permian to Middle Triassic was bounded by transform faults. Magmatic arc was replaced by passive margin as hinterland of the Southern Kitakami Belt during the Middle Permian to Middle Triassic. It means that the sedimentary basin moved from the margin of Yangtze Platform to Sino-Korean Platform at that time.


Author(s):  
Yiming Liu ◽  
Yuhua Wang ◽  
Sanzhong Li ◽  
M. Santosh ◽  
Runhua Guo ◽  
...  

The Tibetan Plateau is composed of several microblocks, the tectonic affinity and paleogeographic correlations of which remain enigmatic. We investigated the Amdo and Jiayuqiao microblocks in central Tibet Plateau with a view to understand their tectonic setting and paleogeographic position within the Neoproterozoic supercontinent Rodinia. We present zircon U-Pb and Lu-Hf isotope, and whole-rock geochemical data on Neoproterozoic granitic gneisses from these microblocks. Zircon grains from the Jiayuqiao granitic gneiss yielded an age of 857 ± 9 Ma with variable εHf(t) values (−8.9 to 4.0). The Amdo granitic gneisses yielded ages of 893 ± 5 Ma, 807 ± 5 Ma, and 767 ± 11 Ma, with εHf(t) values in the range of −4.9 to 3.5. Geochemically, the granitoids belong to high-K calc-alkaline series, with the protolith derived from partial melting of ancient crustal components. The ascending parental magma of the Amdo granitoids experienced significant mantle contamination as compared to the less contaminated magmas that generated the Jiayuqiao intrusions. In contrast to the Lhasa, Himalaya, South China, and Tarim blocks, we suggest that the Amdo and Jiayuqiao microblocks probably formed a unified block during the Neoproterozoic and were located adjacent to the southwestern part of South China craton. The Neoproterozoic magmatism was probably associated with the subduction of the peripheral ocean under the South China craton and the delamination of lithospheric mantle beneath the Jiangnan orogen.


Sign in / Sign up

Export Citation Format

Share Document