Characterization of chert in the Dammam Formation (Eocene), Kuwait: Clues to groundwater silicification processes

2020 ◽  
Vol 90 (3) ◽  
pp. 297-312
Author(s):  
Fikry Ibrahim Khalaf ◽  
Médard Thiry ◽  
Anthony Milnes ◽  
Rehab Alnaqi

ABSTRACT Conspicuous chert horizons occur as discontinuous bands and isolated nodules in dolostones in the Eocene Dammam Formation, which is exposed in the southeast of Kuwait. The Formation has never been deeply buried, and so chert formation is likely to have resulted from silicification processes at or near the land surface. Erosional reworking of the chert constrains its formation to a time period between the late Eocene and the Mio-Pliocene. As there is no significant source of silica in the dolostones, the chert was formed from silica imported from other sources. This process, together with the specificity of chert to particular non-bedding horizons, suggests that silicification is related to discrete locations of the groundwater table during landscape incision and resultant groundwater discharge in the region. Detailed petrographical studies demonstrate that “chertification” was initiated by precipitation of nanoglobules of silica (opal-A) from supersaturated groundwater solutions flowing through voids formed concomitantly by dissolution of dolomite. Subsequently, silica was precipitated as more crystalline forms of chalcedony, microquartz, and megaquartz from successively less saturated groundwater. The most likely mechanism for triggering the precipitation of silica is considered to be significant cooling of the groundwater as it neared the landsurface and came into contact with a cold regolith terrain. Precipitation of disordered forms of silica (opal-A) occurred at the cold front: progressively more crystalline phases formed as the host rock was warmed by the inflowing groundwater and its degree of supersaturation diminished. If our interpretation is correct, this “chertification” process could have been initiated during global cooling related to one of the glaciations recorded during Oligocene and Miocene times.

1991 ◽  
Vol 23 (1-3) ◽  
pp. 545-553
Author(s):  
M. Rödelsperger ◽  
U. Rohmann ◽  
F. Frimmel

A sampling device was designed as a stationary equipment for deep monitoring wells in order to obtain representative groundwater samples from different layers of the aquifer. The device consists of several packer units which can be combined at variable distances, allowing adaption to the local conditions of the aquifer and of the well. The pumps are situated below the groundwater table. Each of the drawing tubes ends between two packers at the concerning depth. Experimental results demonstrate the importance of the application of a stationary packer system instead of a mobile doublepacker in deep aquifers of inhomogeneous structure. Examples of concentration profiles obtained from layerwise groundwater sampling are given and a technique for selective groundwater discharge is described.


Geology ◽  
2000 ◽  
Vol 28 (8) ◽  
pp. 687-690 ◽  
Author(s):  
Hubert B. Vonhof ◽  
Jan Smit ◽  
Henk Brinkhuis ◽  
Alessandro Montanari ◽  
Alexandra J. Nederbragt

PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e28195 ◽  
Author(s):  
Patricia G. Weaver ◽  
Larisa A. Doguzhaeva ◽  
Daniel R. Lawver ◽  
R. Christopher Tacker ◽  
Charles N. Ciampaglio ◽  
...  
Keyword(s):  

2012 ◽  
Vol 108 ◽  
pp. 50-59 ◽  
Author(s):  
Christos Tsabaris ◽  
Dionisis L. Patiris ◽  
Aristomenis P. Karageorgis ◽  
George Eleftheriou ◽  
Vassilis P. Papadopoulos ◽  
...  

2015 ◽  
Vol 8 (6) ◽  
pp. 1857-1876 ◽  
Author(s):  
J. J. Guerrette ◽  
D. K. Henze

Abstract. Here we present the online meteorology and chemistry adjoint and tangent linear model, WRFPLUS-Chem (Weather Research and Forecasting plus chemistry), which incorporates modules to treat boundary layer mixing, emission, aging, dry deposition, and advection of black carbon aerosol. We also develop land surface and surface layer adjoints to account for coupling between radiation and vertical mixing. Model performance is verified against finite difference derivative approximations. A second-order checkpointing scheme is created to reduce computational costs and enable simulations longer than 6 h. The adjoint is coupled to WRFDA-Chem, in order to conduct a sensitivity study of anthropogenic and biomass burning sources throughout California during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. A cost-function weighting scheme was devised to reduce the impact of statistically insignificant residual errors in future inverse modeling studies. Results of the sensitivity study show that, for this domain and time period, anthropogenic emissions are overpredicted, while wildfire emission error signs vary spatially. We consider the diurnal variation in emission sensitivities to determine at what time sources should be scaled up or down. Also, adjoint sensitivities for two choices of land surface model (LSM) indicate that emission inversion results would be sensitive to forward model configuration. The tools described here are the first step in conducting four-dimensional variational data assimilation in a coupled meteorology–chemistry model, which will potentially provide new constraints on aerosol precursor emissions and their distributions. Such analyses will be invaluable to assessments of particulate matter health and climate impacts.


2004 ◽  
Author(s):  
Jean-Luc Widlowski ◽  
Bernard Pinty ◽  
Nadine Gobron ◽  
Michel M. Verstraete ◽  
Dave J. Diner ◽  
...  

2009 ◽  
Vol 6 (2) ◽  
pp. 3359-3384 ◽  
Author(s):  
A. Millares ◽  
M. J. Polo ◽  
M. A. Losada

Abstract. The study of baseflow in mountainous areas of basin headwaters, where the characteristics of the often fractured materials are very different to the standard issues concerning porous material applied in conventional hydrogeology, is an essential element in the characterization and quantification of water system resources. Their analysis through recession fragments provides information on the type of response of the sub-surface and subterranean systems and on the average relation between the storage and discharge of aquifers, starting from the joining of these fragments into a single curve, the Master Recession Curve (MRC). This paper presents the generation of the downward MRC over fragments selected after a preliminary analysis of the recession curves, using a hydrological model as the methodology for the identification and the characterization of quick sub-surface flows flowing through fractured materials. The hydrological calculation has identified recession fragments through surface runoff or snowmelt and those periods of intense evapotranspiration. The proposed methodology has been applied to three sub-basins belonging to a high altitude mountain basin in the Mediterranean area, with snow present every year, and their results were compared with those for the upward concatenation of the recession fragments. The results show the existence of two different responses, one quick (at the sub-surface, through the fractured material) and the other slow, with linear behavior which takes place in periods of 10 and 17 days, respectively and which is linked to the dimensions of the sub-basin. In addition, recesses belonging to the dry season have been selected in order to compare and validate the results corresponding to the study of recession fragments. The comparison, using these two methodologies, which differ in the time period selected, has allowed us to validate the results obtained for the slow flow.


Sign in / Sign up

Export Citation Format

Share Document