BURROWS OF THE POLYCHAETE PERINEREIS AIBUHIUTENSIS ON A TIDAL FLAT OF THE YELLOW RIVER DELTA IN CHINA: IMPLICATIONS FOR THE ICHNOFOSSILS POLYKLADICHNUS AND ARCHAEONASSA

Palaios ◽  
2019 ◽  
Vol 34 (5) ◽  
pp. 271-279 ◽  
Author(s):  
WANG YUANYUAN ◽  
WANG XUEQIN ◽  
ALFRED UCHMAN ◽  
HU BIN ◽  
SONG HUIBO
Author(s):  
Jiewen Zheng ◽  
Yonggang Jia ◽  
Xiaolei Liu ◽  
Hongxian Shan

The role of hydrodynamics in the secondary reworking of sediment in a tidal flat of the Yellow River delta was studied. Field hydrodynamic conditions were measured in the study area, and subsurface and surface samples at selected points were collected. Laboratory analyses were performed to measure variations in the grain sizes, mineral constituents, and microstructures of the sediment. Moreover, fractal dimension calculations were introduced to obtain additional quantitative sedimentological data. The results of the studies indicate clear responses of the seabed sediment to variations in the hydrodynamic conditions both in the vertical profile and in a seaward transect and indicate that hydrodynamic changes can play a significant role in sculpting the topographic features of tidal flats.


2013 ◽  
Vol 37 (6) ◽  
pp. 503-516 ◽  
Author(s):  
Li-Qiong YANG ◽  
Guang-Xuan HAN ◽  
Jun-Bao YU ◽  
Li-Xin WU ◽  
Min ZHU ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 270
Author(s):  
Meiyun Tang ◽  
Yonggang Jia ◽  
Shaotong Zhang ◽  
Chenxi Wang ◽  
Hanlu Liu

The silty seabed in the Yellow River Delta (YRD) is exposed to deposition, liquefaction, and reconsolidation repeatedly, during which seepage flows are crucial to the seabed strength. In extreme cases, seepage flows could cause seepage failure (SF) in the seabed, endangering the offshore structures. A critical condition exists for the occurrence of SF, i.e., the critical hydraulic gradient (icr). Compared with cohesionless sands, the icr of cohesive sediments is more complex, and no universal evaluation theory is available yet. The present work first improved a self-designed annular flume to avoid SF along the sidewall, then simulated the SF process of the seabed with different consolidation times in order to explore the icr of newly deposited silty seabed in the YRD. It is found that the theoretical formula for icr of cohesionless soil grossly underestimated the icr of cohesive soil. The icr range of silty seabed in the YRD was 8–16, which was significantly affected by the cohesion and was inversely proportional to the seabed fluidization degree. SF could “pump” the sediments vertically from the interior of the seabed with a contribution to sediment resuspension of up to 93.2–96.8%. The higher the consolidation degree, the smaller the contribution will be.


2021 ◽  
pp. 117330
Author(s):  
Wei Zhu ◽  
Jingsong Yang ◽  
Rongjiang Yao ◽  
Xiangping Wang ◽  
Wenping Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document