IMPLICATIONS OF OROGENIC WEDGE GROWTH, INTRAPLATE STRESS VARIATIONS, AND EUSTATIC SEA-LEVEL CHANGE FOR FORELAND BASIN STRATIGRAPHY—INFERENCES FROM NUMERICAL MODELING

Author(s):  
TIM PEPER ◽  
RONALD VAN BALEN ◽  
SIERD CLOETINGH
2021 ◽  
Author(s):  
Lalit Kumar Rai ◽  
Kohki Yoshida

Abstract The Siwalik Group, ranging from the Early Miocene to Pleistocene, is believed to be controlled by contemporary Himalayan tectonics and climate. In this study, we established the fluvial system responsible for the deposition of the Siwalik succession along the Muksar Khola section and its controlling factors. Five sedimentary facies associations are identified which are interpreted as the deposits of flood plain dominated fine-grained meandering river (FA1), flood dominated overbank environment (FA2), sandy meandering river (FA3), anastomosing river (FA4), and debris flow dominated gravelly braided river (FA5). These change in fluvial style occurred around 10.5 Ma, 10.0 Ma, 5.9 Ma and 3.5 Ma due to the effects of hinterland tectonics, climate and sea-level change. The thick succession of intraformational conglomerate reveals the intensification of monsoon started around 10.5 Ma in the eastern Nepal Himalaya. The present study show asynchronous exhumation of the Himalaya east to west brought significant difference on the fluvial environment of the Neogene foreland basin. Moreover, this study also reveals continuous drifting of the foreland basin towards the hinterland concerning depositional age.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Lalit Kumar Rai ◽  
Kohki Yoshida

AbstractThe Siwalik Group, ranging from the Early Miocene to Pleistocene, is believed to be deposited in the fluvial environment and controlled by contemporary Himalayan tectonics and climate. In this study, we established the fluvial environment and its controlling factors responsible for the deposition of the Siwalik succession along the Muksar Khola section in the eastern Nepal Himalaya. Five sedimentary facies associations are identified; these are interpreted as the deposits of flood plain-dominated fine-grained meandering river (FA1), flood-dominated overbank environment (FA2), sandy meandering river (FA3), anastomosing river (FA4), and debris flow-dominated gravelly braided river (FA5). These changes in the fluvial system occurred around 10.5 Ma, 10.0 Ma, 5.9 Ma and 3.5 Ma, defined by existing magnetostratigraphy constraints, due to the effects of hinterland tectonics, climate and sea-level change and continuous drifting of the foreland basin towards the hinterland concerning depositional age. The thick succession of an intraformational conglomerate reveals intensification of the monsoon started around 10.5 Ma in the eastern Nepal Himalaya. The present study also shows asynchronous exhumation of the Himalaya from east to west brought a significant difference in the fluvial environment of the Neogene foreland basin.


Author(s):  
Donald Eugene Canfield

This chapter discusses the modeling of the history of atmospheric oxygen. The most recently deposited sediments will also be the most prone to weathering through processes like sea-level change or uplift of the land. Thus, through rapid recycling, high rates of oxygen production through the burial of organic-rich sediments will quickly lead to high rates of oxygen consumption through the exposure of these organic-rich sediments to weathering. From a modeling perspective, rapid recycling helps to dampen oxygen changes. This is important because the fluxes of oxygen through the atmosphere during organic carbon and pyrite burial, and by weathering, are huge compared to the relatively small amounts of oxygen in the atmosphere. Thus, all of the oxygen in the present atmosphere is cycled through geologic processes of oxygen liberation (organic carbon and pyrite burial) and consumption (weathering) on a time scale of about 2 to 3 million years.


Sign in / Sign up

Export Citation Format

Share Document