intraplate stress
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 2)

H-INDEX

22
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Niklas Ahlrichs ◽  
Vera Noack ◽  
Christian Hübscher ◽  
Elisabeth Seidel

<p>Within the DFG project StrucFlow, we investigate the multiphase character of Late Cretaceous to Cenozoic inversion in the Baltic sector of the North German Basin based on seismic interpretation. Our analysis rests upon modern high-resolution seismic profiles in combination with data from older seismic surveys and borehole information. The resulting seismic database consists of a dense profile network with a total length of some 10.000 km. This unprecedented seismic grid allows for a detailed tectono-stratigraphic interpretation of Cretaceous and Paleogene deposits in the Baltic sector of the North German Basin. Here, basin inversion began in the Coniacian and Santonian with uplift of the Grimmen High and minor reactivation of Zechstein salt structures. Crestal faults were formed or reactivated above salt pillows in the Bays of Mecklenburg and Kiel. The onset of inversion was contemporaneous with other adjacent basins and is likewise associated with building up intraplate stress within the European foreland related to the beginning Africa-Iberia-Europe convergence. Time-isopach maps of Paleocene deposits in the study area show a slight decrease in thickness to the west. This contrasts the prevailing trend of increasing thickness towards the southwest directed basin center and indicates a changed depositional environment. In the outer eastern Glückstadt Graben, increased thicknesses and diverging strata of late Eocene and Oligocene units indicate significant remobilization of salt structures during this time. Preexisting Triassic faults above the salt pillows “Schleimünde” and “Kieler Bucht” at the eastern border of the Glückstadt Graben were reactivated and form a north-south trending crestal graben filled with Paleogene sediments. This phase of salt remobilization is contemporaneous with the reintroduction of intraplate stress triggered by the Alpine and Pyrenean orogenies in the late Eocene. In the eastern Bay of Kiel and in the Bay of Mecklenburg, Late Eocene and younger sediments are largely absent due to Neogene uplift and erosion. Deepening of rim-synclines and synchronous infill of Paleogene strata give evidence for commencing salt pillow growth. Crestal faults pierce the Paleocene and Eocene strata, indicating salt movement at least during the later Eocene. This phase of salt movement occurred contemporaneously with salt remobilization in the Glückstadt Graben, initiation of the European Cenozoic Rift System and increased activity in the Alpine realm in the Late Eocene to Oligocene. We conclude that the rise of salt pillows since the Eocene significantly exceeds the growth during late Cretaceous to Paleocene inversion phase at the northeastern North German Basin.</p>


2018 ◽  
Vol 11 (6) ◽  
pp. 433-437 ◽  
Author(s):  
Will Levandowski ◽  
Robert B. Herrmann ◽  
Rich Briggs ◽  
Oliver Boyd ◽  
Ryan Gold

Fuel ◽  
2017 ◽  
Vol 200 ◽  
pp. 31-36 ◽  
Author(s):  
Scott Dyksterhuis ◽  
R. Dietmar Müller

2016 ◽  
Vol 71 ◽  
pp. 278-295 ◽  
Author(s):  
Marcelo Assumpção ◽  
Fábio L. Dias ◽  
Ivan Zevallos ◽  
John B. Naliboff

Solid Earth ◽  
2012 ◽  
Vol 3 (2) ◽  
pp. 313-326 ◽  
Author(s):  
M. V. Chertova ◽  
T. Geenen ◽  
A. van den Berg ◽  
W. Spakman

Abstract. Subduction modelling in regional model domains, in 2-D or 3-D, is commonly performed using closed (impermeable) vertical boundaries. Here we investigate the merits of using open boundaries for 2-D modelling of lithosphere subduction. Our experiments are focused on using open and closed (free slip) sidewalls while comparing results for two model aspect ratios of 3:1 and 6:1. Slab buoyancy driven subduction with open boundaries and free plates immediately develops into strong rollback with high trench retreat velocities and predominantly laminar asthenospheric flow. In contrast, free-slip sidewalls prove highly restrictive on subduction rollback evolution, unless the lithosphere plates are allowed to move away from the sidewalls. This initiates return flows pushing both plates toward the subduction zone speeding up subduction. Increasing the aspect ratio to 6:1 does not change the overall flow pattern when using open sidewalls but only the flow magnitude. In contrast, for free-slip boundaries, the slab evolution does change with respect to the 3:1 aspect ratio model and slab evolution does not resemble the evolution obtained with open boundaries using 6:1 aspect ratio. For models with open side boundaries, we could develop a flow-speed scaling based on energy dissipation arguments to convert between flow fields of different model aspect ratios. We have also investigated incorporating the effect of far-field generated lithosphere stress in our open boundary models. By applying realistic normal stress conditions to the strong part of the overriding plate at the sidewalls, we can transfer intraplate stress to influence subduction dynamics varying from slab roll-back, stationary subduction, to advancing subduction. The relative independence of the flow field on model aspect ratio allows for a smaller modelling domain. Open boundaries allow for subduction to evolve freely and avoid the adverse effects (e.g. forced return flows) of free-slip boundaries. We conclude that open boundaries in combination with intraplate stress conditions are to be preferred for modelling subduction evolution (rollback, stationary or advancing) using regional model domains.


Sign in / Sign up

Export Citation Format

Share Document