CLIMATE, SEA LEVEL, AND RESERVOIR QUALITY IN DEPOSITS OF POLAR GLACIMARINE SETTINGS: INSIGHTS FROM THE NEOGENE SUCCESSION OF THE VICTORIA LAND BASIN, ANTARCTICA

Geology ◽  
1987 ◽  
Vol 15 (7) ◽  
pp. 634 ◽  
Author(s):  
P. J. Barrett ◽  
D. P. Elston ◽  
D. M. Harwood ◽  
B. C. McKelvey ◽  
P.-N. Webb

1998 ◽  
Vol 134 (3) ◽  
pp. 653-662 ◽  
Author(s):  
Leonardo Sagnotti ◽  
Fabio Florindo ◽  
Kenneth L. Verosub ◽  
Gary S. Wilson ◽  
Andrew P. Roberts

1979 ◽  
Vol 22 (86) ◽  
pp. 53-65 ◽  
Author(s):  
Paul A. Mayewski ◽  
John W. Attig ◽  
David J. Drewry

AbstractRennick Glacier is one of the major ice drainages in northern Victoria Land. Unlike glaciers farther south along the Transantarctic Mountains, Rennick Glacier does not drain into the Ross Ice Shelf but flows directly into a seasonally ice-covered ocean. Therefore, current fluctuations of this glacier are unhampered by the dampening effects of the Ross Ice Shelf. The primary controls on the activity of this glacier and others in this region are mass balance and sea-level.Two major glacial events are recorded in the upper Rennick Glacier region. The location of erratics and glacially scoured features suggest that during the oldest or Evans glaciation ice covered all but the highest peaks in the region. Following this glaciation a re-advance produced the Rennick glaciation. Drift produced during this glaciation has a surface cover of unweathered clasts and is commonly found in the form of recessional moraines with associated ice-marginal lakes. Rennick Glacier is currently in a recessional phase of the Rennick glaciation. The phase is characterized by physical re-adjustments of local ice masses including progressive inland migration of the Rennick Glacier grounding line. To date the grounding line has migrated up to the mid-point of the glacier. This trend may be expected to continue.


1974 ◽  
Vol 13 (69) ◽  
pp. 415-429
Author(s):  
Parker E. Calkin

The results of airborne radio-echo (R/E) depth sounding over Wilson Piedmont Glacier, Mackay, Ferrar and Taylor outlet glaciers, and over the ice sheet bordering the mountains, provide ice thicknesses and subglacial topography accurate to 20 m and to 1 km areally. The R/E records show that flours of the Debenham, Wright and Victoria Valleys occur beneath the Wilson Piedmont at elevations of –260 m, and up to 260 and 670 m, respectively. The 670 m “threshold” may have blocked easterly marine and glacial invasions experienced by lower valleys. Profiles along the outlet glaciers display large depressions, some below sea-level. These are associated with erosion by tributaries and with glacial erosion through thick dolerite sills. Elevated ridges thought to be sills submerged beneath the heads of these glaciers also limit nourishment from the adjacent part of the ice sheet. The subglacial west flank of the mountains is formed by a series of high steep-sided plateaux with gentle west-sloping surfaces. Block faulting, west-dipping dolerite and sandstone units, and glacial erosion must explain this topography.


Clay Minerals ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 389-404 ◽  
Author(s):  
M. Setti ◽  
L. Marinoni ◽  
A. Lopez-Galindo

AbstractThe CRP-3 drilling project collected sediments from 3 to 939 mbsf (metres below sea floor) in the Victoria Land Basin in Antarctica. The upper sequence (down to ~790 m bsf) is of Cenozoic age and made up of detrital glaciogenic sediments; the characteristics of clay minerals in this part have been reported elsewhere. Here, the compositional features of clay minerals in the lower sequence such as conglomerates, Devonian sandstones and dolerites are described and genetic processes clarified. Clay minerals in the deepest part of the sequence derive from the alteration of different lithologies that mostly make up the sedimentary basin.Two clay mineral assemblages were characterized through analysis by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). From 790 to 823 mbsf, samples consist of authigenic smectite of variable chemical composition forming imbricated texture of plates or flakes. The smectites probably result from hydrothermal/diagenetic transformation of earlier minerals. The primary smectite cement underwent reorganization during shearing and cataclasis. The lowest part of the sequence (below 823 mbsf) is characterized by an assemblage of kaolinite, mixed-layer illite-smectite, Fe oxyhydroxide, sporadic smectite and poorly crystallized illite. It reflects a stronger alteration process than that recorded in the upper units of core CRP-3, related to hydrothermalism connected with the intrusion of an igneous body. Both assemblages show clear differences in particle morphology, texture and smectite composition to the clay assemblages found in the Cenozoic glaciomarine sediments in the upper sequence. The different phases of alteration appear related to the processes of rifting, exhumation and faulting that characterized this region since the Mesozoic.


Sign in / Sign up

Export Citation Format

Share Document