scholarly journals Quantifying Vegetation Change by Point Sampling Landscape Photography Time Series

2005 ◽  
Vol 58 (6) ◽  
pp. 588-597 ◽  
Author(s):  
Patrick E. Clark ◽  
Stuart P. Hardegree
2018 ◽  
Vol 10 (7) ◽  
pp. 1075 ◽  
Author(s):  
Jacqueline Morrison ◽  
Thomas Higginbottom ◽  
Elias Symeonakis ◽  
Martin Jones ◽  
Fred Omengo ◽  
...  

2021 ◽  
Vol 117 (7/8) ◽  
Author(s):  
Nndanduleni Muavhi

This study presents a simple approach of spatiotemporal change detection of vegetation cover based on analysis of time series remotely sensed images. The study was carried out at Thathe Vondo Area, which is characterised by episodic variation of vegetation gain and loss. This variation is attributable to timber and tea plantations and their production cycles, which periodically result in either vegetation gain or loss. The approach presented here was implemented on two ASTER images acquired in 2007 and 2017. It involved the combined use of band combination, unsupervised image classification and Normalised Difference Vegetation Index (NDVI) techniques. True colour composite (TCC) images for 2007 and 2017 were created from combination of bands 1, 2 and 3 in red, blue and green, respectively. The difference image of the TCC images was then generated to show the inconsistencies of vegetation cover between 2007 and 2017. For analytical simplicity and interpretability, the difference image was subjected to ISODATA unsupervised classification, which clustered pixels in the difference image into eight classes. Two ISODATA derived classes were interpreted as vegetation gain and one as vegetation loss. These classes were confirmed as regions of vegetation gain and loss by NDVI values of 2007 and 2017. In addition, the polygons of vegetation gain and loss regions were created and superimposed over the TCC images to further demonstrate the spatiotemporal vegetation change in the area. The vegetation change statistics show vegetation gain and loss of 10.62% and 2.03%, respectively, implying a vegetation gain of 8.59% over the selected decade.


2016 ◽  
Vol 31 (9) ◽  
pp. 2045-2062 ◽  
Author(s):  
Jonathan J. Maynard ◽  
Jason W. Karl ◽  
Dawn M. Browning

GEOgraphia ◽  
2021 ◽  
Vol 23 (50) ◽  
Author(s):  
Eduardo Ribeiro Lacerda ◽  
Raúl Sanchéz Vicens

O surgimento de algoritmos de detecção de mudanças na vegetação na última década é impressionante. Mas os resultados gerados ainda possuem ruído que precisa ser tratado com a utilização de resultados de outros mapeamentos de cobertura vegetal. Além disso, a necessidade de gerar classes de uso do solo invariantes é importante para o melhor entendimento de processos que ocorrem em áreas florestais. Pensando nisso, este trabalho busca criar uma nova forma de mapear essas áreas invariáveis que possam ser utilizadas para mascarar ruídos e também como subsídio para outros estudos de conservação e restauração. A metodologia proposta aqui usa a plataforma Google Earth Engine e um algoritmo de aprendizado de máquina: o Random Forest, para classificar áreas de floresta invariáveis usando todo o acervo de imagens da série temporal Landsat, de uma só vez. Os resultados mostraram que a nova abordagem teve melhor desempenho do que o uso de técnicas mais tradicionais como a agregação de mapeamentos de uso e cobertura anuais, com uma acurácia global de 91,7%. O trabalho busca ainda contribuir com a comunidade de sensoriamento remoto ao apresentar, após exaustivos testes, as melhores opções de variáveis a serem utilizadas neste tipo de classificação. Palavras-chave: Séries Temporais, Detecção de Mudanças, Florestas, Google Earth Engine, Random Forest.DETECTION OF INVARIANT VEGETATION AREAS IN TIME SERIES USING RANDOM FOREST ALGORITHMAbstract: The emergence of vegetation change detection algorithms in the last decade is impressive. But the results still have a lot of noise that needs to be cleaned. And the data cleaning process still uses other landcover mapping results. Besides that, the necessity to generate invariant land use classes is important to know particularly to forest areas. Thinking about that, this paper seeks to create a new form of mapping these invariant areas that can be used to mask noise and as an input on other conservation and restoration studies. The methodology proposed here uses the Google Earth Engine platform and a Random Forest algorithm to classify invariant forest areas using all the image’s collection in the time series at once. The results showed that the new approach performed better than the use of more traditional techniques such as the aggregation of annual land-use and land-cover mappings, with an overall accuracy of 91.7%. Also, this paper seeks to contribute to the remote sensing community showing after exhaustive testing, good options of variables to use on this type of work. Keywords: Time Series, Change Detection, Forests, Google Earth Engine, Random Forest.DETECCIÓN DE ÁREAS DE VEGETACIÓN INVARIANTES EN SÉRIES TEMPORALES UTILIZANDO ALGORITMO RANDOM FORESTResumen: La aparición de algoritmos de detección de cambios en la vegetación en la última década es impresionante. Pero los resultados todavía tienen muchos ruidos que deben ser eliminados. Además, el proceso de limpieza de datos se basa en otros mapas de cobertura de la tierra. Además de eso, es importante conocer la necesidad de generar clases de uso de la tierra invariables, particularmente en las áreas forestales. Pensando en eso, este artículo busca crear una nueva forma de mapear estas áreas invariantes que se pueden utilizar para enmascarar el ruido y como un aporte para otros estudios de conservación y restauración. La metodología propuesta aquí utiliza la plataforma Google Earth Engine y un algoritmo de aprendizaje de máquina: o Random Forest para clasificar áreas invariantes de bosque, utilizando a la vez todas las imágenes de la serie temporal Landsat. Los resultados encontraron que el nuevo enfoque tuvo mejor desempeño que el uso de técnicas tradicionales, con una precisión global del 91,7%. Este trabajo busca además contribuir con la comunidad de la teledetección, mostrando mediante de exhaustivas pruebas, mejores opciones de variables para utilizar en este tipo de clasificación. Palabras clave: Series de Tiempo, Detección de Cambios, Bosques, Google Earth Engine, Random Forest.


2021 ◽  
Vol 62 (1) ◽  
pp. 42-52
Author(s):  
Dung Mai Thi Nguyen ◽  
Thu Hoai Thi Vu ◽  

Spatial big data has a large scale and complex, therefore, it cannot be collected, managed, and analyzed by traditional data analytic software shortly. These platforms in many situations are restricted to vectors data. However, the raster data generated by the sensors on the enormous number of satellites now needs to be processed in parallel on the cluster environment. The article introduces the satellite image data analyzing method using the RasterFrames library on the Apache Spark platform. The RasterFrames library examines raster data for Python, Scala, and SQL, bringing the power of Spark DataFrames to access to Earth Observation, cloud computing, and data science. In the experimental part, the NDVI and the change in the average value of NDVI in the time series are calculated to demonstrate the vegetation mantle changes in Phu Tho province. These results are the reference data source in the assessment of weather, climate, and environmental changes in the study area during that time.


2020 ◽  
Vol 12 (24) ◽  
pp. 4049
Author(s):  
Zhu Ruan ◽  
Yaoqiu Kuang ◽  
Yeyu He ◽  
Wei Zhen ◽  
Song Ding

Time Series Segmentation and Residual Trend analysis (TSS-RESTREND) can detect an abrupt change that was undetected by Residual Trend analysis (RESTREND), but it is usually combined with the Global Inventory for Mapping and Modeling Studies (GIMMS) Normalized Difference Vegetation Index (NDVI), which cannot detect detailed vegetation changes in small areas. Hence, we used Time Series Segmentation and Residual Trend analysis (TSS-RESTREND) and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI (MOD-TR) to analyze the vegetation dynamic of the Pearl River Delta region (PRD) in this study. To choose the most suitable MODIS NDVI from MOD13Q1 (250 m), MOD13A1 (500 m), and MOD13A2 (1 km), whole and local comparison of results of the break year and MOD-TR were used. Meanwhile, a comparison of vegetation change at the city-scale was also implemented. Moreover, to reduce insignificant trend pixels in TSS-RESTREND, a combination method of TSS-RESTREND and RESTREND (CTSS-RESTREND) was proposed. We found that: (1) MOD13Q1 and MOD13A1 two NDVI were suitable for combination with TSS-RESTREND to detect vegetation change in PRD, but MOD13Q1 was a better choice when considering the accuracy of local detailed vegetation change; (2) CTSS-RESTREND could detect more pixels with a significant change (i.e., significant increase and significant decrease) than those of TSS-RESTREND and RESTREND. Also, its effectiveness could be verified by Landsat data; (3) at the city-scale, the CTSS-RESTREND detected that only vegetation decreases in Shenzhen, Foshan, Dongguan, and Zhongshan were higher than vegetation increases, but, significant vegetation changes (i.e., decreases and increases) were mainly concentrated in Huizhou, Jiangmen, Zhaoqing, and Guangzhou.


Sign in / Sign up

Export Citation Format

Share Document