scholarly journals Isolation and Purification of a Cyclooxygenase-2 from the Blood of a Patient Suffering from Rheumatoid Arthritis and Studying the Effect of Natural Products of the Soapwort on the Activity of Purified Enzyme

2016 ◽  
Vol 13 (1) ◽  
pp. 133-145
Author(s):  
Baghdad Science Journal

In this paper to isolate and study the properties of the cyclooxygenase-2 (EC: 1.14.99.1) enzyme in the blood of a patient suffering from rheumatoid arthritis and study the effect of natural products of the Soapwort on the activity of purified enzyme. The study involves taking 30 ml of blood from an adult woman 40 years old, who suffers from rheumatoid arthritis disease for 13 years. Serum is separated and subjected to a series of purification processes including: precipitation by ammonium sulfate, filtration by centrifugation radiator, dialysis in presence of ammonium bicarbonate, separation using the technology of ion exchange, lipholization and then estimating approximate molecular weight of the enzyme using gel filtration technique and sodium dodecyl sulfate (SDS)-page polyacrylamide gel electrophoresis. The study also includes isolating the natural products of Soapwort plant and study the effect of isolated natural products on the activity of the purified enzyme. The result of the study indicates that cycloxygenase-2 has an approximate molecular weight of 71.5 kDa and that the extracted oil of the Soapwort has a negative impact on the activity of the enzyme (r= -0.824; P=0.006), while flavonoids and Saponin have no such impact (r= -0.565; P=0.113; r= -0.634; P=0.067 respectively).

1995 ◽  
Vol 58 (8) ◽  
pp. 890-898 ◽  
Author(s):  
WANDA J. LYON ◽  
DENNIS G. OLSON ◽  
ELSA A. MURANO

A meat isolate, identified as Enterococcus faecium L1, was found to produce a bacteriocin designated enterocin EL1 Enterocin EL1 was active against a narrow spectrum of microorganisms, inhibiting all tested strains of Listeria. Identification of the producer strain was determined phenotypically by biochemical and morphological tests. Enterocin EL1 was heat stable, sensitive to several proteolytic enzymes, and stable from pH 2 to 11. Adsorption of the bacteriocin to producer cells was dependent on ionic interaction of the bacteriocin and the cell surface at various pHs. By changing the pH of the extraction buffer, enterocin EL1 was extracted from E. faecium L1 cells in a concentrated form. Enterocin EL1 isolated by cell extraction was resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a protein with an approximate molecular weight of 2,300. Partially purified enterocin EL1 added to sensitive cells of Listeria ivanovii was bactericidal; however, the bacteriocin did not inhibit the producer strain L1.


1992 ◽  
Vol 68 (05) ◽  
pp. 534-538 ◽  
Author(s):  
Nobuhiko Yoshida ◽  
Shingi Imaoka ◽  
Hajime Hirata ◽  
Michio Matsuda ◽  
Shinji Asakura

SummaryCongenitally abnormal fibrinogen Osaka III with the replacement of γ Arg-275 by His was found in a 38-year-old female with no bleeding or thrombotic tendency. Release of fibrinopeptide(s) by thrombin or reptilase was normal, but her thrombin or reptilase time in the absence of calcium was markedly prolonged and the polymerization of preformed fibrin monomer which was prepared by the treatment of fibrinogen with thrombin or reptilase was also markedly defective. Propositus' fibrinogen had normal crosslinking abilities of α- and γ-chains. Analysis of fibrinogen chains on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the system of Laemmli only revealed the presence of abnormal γ-chain with an apparently higher molecular weight, the presence of which was more clearly detected with SDS-PAGE of fibrin monomer obtained by thrombin treatment. Purified fragment D1 of fibrinogen Osaka III also seemed to contain an apparently higher molecular weight fragment D1 γ remnant on Laemmli gels, which was digested faster than the normal control by plasmin in the presence of [ethy-lenebis(oxyethylenenitrilo)]tetraacetic acid (EGTA).


1977 ◽  
Vol 55 (9) ◽  
pp. 958-964 ◽  
Author(s):  
M. P. C. Ip ◽  
R. J. Thibert ◽  
D. E. Schmidt Jr.

Cysteine-glutamate transaminase (cysteine aminotransferase; EC 2.6.1.3) has been purified 149-fold to an apparent homogeneity giving a specific activity of 2.09 IU per milligram of protein with an overall yield of 15%. The isolation procedures involve the preliminary separation of a crude rat liver homogenate which was submitted sequentially to ammonium sulfate fractionation, TEAE-cellulose column chromatography, ultrafiltration, and isoelectrofocusing. The final product was homogenous when examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). A minimal molecular weight of 83 500 was determined by Sephadex gel chromatography. The molecular weight as estimated by polyacrylamide gel electrophoresis in the presence of SDS was 84 000. The purified enzyme exhibited a pH optimum at 8.2 with cysteine and α-ketoglutarate as substrates. The enzyme is inactivated slowly when kept frozen and is completely inactivated if left at room temperature for 1 h. The enzyme does not catalyze the transamination of α-methyl-DL-cysteine, which, when present to a final concentration of 10 mM, exhibits a 23.2% inhibition of transamination of 30 mM of cysteine. The mechanism apparently resembles that of aspartate-glutamate transaminase (EC 2.6.1.1) in which the presence of a labile hydrogen on the alpha-carbon in the substrate is one of the strict requirements.


1998 ◽  
Vol 66 (9) ◽  
pp. 4374-4381 ◽  
Author(s):  
John C. McMichael ◽  
Michael J. Fiske ◽  
Ross A. Fredenburg ◽  
Deb N. Chakravarti ◽  
Karl R. VanDerMeid ◽  
...  

ABSTRACT The UspA1 and UspA2 proteins of Moraxella catarrhalisare potential vaccine candidates for preventing disease caused by this organism. We have characterized both proteins and evaluated their vaccine potential using both in vitro and in vivo assays. Both proteins were purified from the O35E isolate by Triton X-100 extraction, followed by ion-exchange and hydroxyapatite chromatography. Analysis of the sequences of internal peptides, prepared by enzymatic and chemical cleavage of the proteins, revealed that UspA1 and UspA2 exhibited distinct structural differences but shared a common sequence including an epitope recognized by the monoclonal antibody 17C7. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), purified UspA1 exhibited a molecular weight of approximately 350,000 when unheated and a molecular weight of 100,000 after being heated for 10 min at 100°C. In contrast, purified UspA2 exhibited an apparent molecular weight of 240,000 by SDS-PAGE that did not change with the length of time of heating. Their sizes as determined by gel filtration were 1,150,000 and 830,000 for UspA1 and UspA2, respectively. Preliminary results indicate the proteins have separate functions in bacterial pathogenesis. Purified UspA1 was found to bind HEp-2 cells, and sera against UspA1, but not against UspA2, blocked binding of the O35E isolate to the HEp-2 cells. UspA1 also bound fibronectin and appears to have a role in bacterial attachment. Purified UspA2, however, did not bind fibronectin but had an affinity for vitronectin. Both proteins elicited bactericidal antibodies in mice to homologous and heterologous disease isolates. Finally, mice immunized with each of the proteins, followed by pulmonary challenge with either the homologous or a heterologous isolate, cleared the bacteria more rapidly than mock-immunized mice. These results suggest that UspA1 and UspA2 serve different virulence functions and that both are promising vaccine candidates.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


1988 ◽  
Vol 66 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Eduardo T. Cánepa ◽  
Elena B.C. Llambías

Pig liver ferrochelatase was purified 465-fold with about 30% yield, to apparent homogeneity, by a procedure involving solubilization from mitochondria, ammonium sulfate fractionation, and Sephacryl S-300 chromatography. The fraction of each purification step had cobaltochelatase as well as ferrochelatase activity. A purified protein of molecular weight 40 000 was found by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. A molecular weight of approximately 240 000 was obtained by Sephacryl S-300 chromatography. Both activities of the purified fraction increased linearly with time until 2 h. but nonlinear plots were obtained with increasing concentrations of protein. Their optimum pH values were similar. Km values were, for ferrochelatase activity, 23.3 μM for the metal and 30.3 μM for mesoporphyrin. and for cobaltochelatase activity. 27 and 45.5 μM, respectively. Fe2+ and Co2+ each protected against inactivation by heat. Pb2+, Zn2+, Cu2+, or Hg2+ inhibited both activities, while Mn2+ slightly activated; Mg2+ had no effect, at the concentrations tested. There appeared to be an involvement of sulfhydryl groups in metal insertion. Lipids, in correlation with their degree of unsaturation, activated both purified activities; phospholipids also had activation effects. We conclude that a single protein catalyzes the insertion of Fe2+ or Co2+ into mesoporphyrin.


1973 ◽  
Vol 51 (11) ◽  
pp. 1551-1555 ◽  
Author(s):  
Tony C. M. Seah ◽  
A. R. Bhatti ◽  
J. G. Kaplan

At any stage of growth of a wild-type bakers' yeast, some 20% of the catalatic activity of crude extracts is not precipitable by means of antibody prepared against the typical catalase (catalase T), whose purification and properties have been previously described. Some of this catalatic activity is due to the presence of an atypical catalase (catalase A), a heme protein, with a molecular weight estimated as 170 000 – 190 000, considerably lower than that of the usual catalases (225 000 – 250 000). Preparations of catalase A were found to be homogeneous in the analytical ultracentrifuge and in polyacrylamide gel electrophoresis. Its subunit molecular weight, determined from its iron content, was 46 500, virtually the same as that of the major band obtained in gel electrophoresis in the presence of sodium dodecyl sulfate, suggesting that the native protein is tetrameric. Its specific activity is in the range of those reported for other typical catalases.


1989 ◽  
Vol 40 (3) ◽  
pp. 675 ◽  
Author(s):  
DJ Tucker ◽  
AHF Hudson ◽  
A Laudani ◽  
RC Marshall ◽  
DE Rivett

The proteins from a range of cashmere, mohair, angoratcashmere crossbred and wool fibre samples were extracted at pH 8 with 8 M urea containing dithiothreitol, and were then radiolabelled by S-carboxymethylation using iodo(2-14C) acetate. The proteins from each sample were examined by two dimensional polyacrylamide gel electrophoresis in which the separation in the first dimension was according to charge at pH 8.9 and in the second dimension according to apparent molecular weight in the presence of sodium dodecyl sulfate. After electrophoresis the proteins were detected by fluorography. Protein differences in keratin samples from some individual goats existed, although the overall protein patterns were similar. None of the differences were consistent with any one goat fibre type. The protein patterns obtained for fibre samples from individual cashmere goats showed some differences when compared to those found for commercial blends from the same country of origin, indicating that blending can mask any animal-to-animal variation. While the electrophoretic technique does not unequivocally distinguish between cashmere, mohair and angora/cashmere crossbred fibres it does differentiate between wool and goat fibres.


Sign in / Sign up

Export Citation Format

Share Document