scholarly journals Noncovalently D-arabinitol Molecularly Imprinted Polymers (MIPs) to Identify Different Sugar Alcohols

2021 ◽  
Vol 18 (4(Suppl.)) ◽  
pp. 1536
Author(s):  
Yuni Retnaningtyas ◽  
Ganden Supriyanto ◽  
Roedi Irawan ◽  
Siswandono Siswodihardjo

Molecularly imprinted polymers (MIPs) are an effective method for separating enantiomeric compounds. The main objective of this research is to synthesize D-arabinitol MIPs, which can selectively separate                  D-arabinitol and its potential application to differentiate it from its enantiomer compound through a non-covalent approach. A macroporous polymer was synthesized using D-arabinitol as a template, acrylamide as a functional monomer, ethylene glycol dimethacrylate (EGDMA) being a cross-linker, dimethylsulfoxide (DMSO) being a porogen, as well as benzoyl peroxide being an initiator. After polymer synthesis,                  D-arabinitol was removed by a mixture of methanol and acetic acid (4:1, v/v). Fourier-Transform Infrared spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) distinguished the MIPs and NIPs.                     A selectivity test of MIPs against its enantiomers (L-arabinitol, xylitol, adonitol, and glucose) was carried out using the batch rebinding method. The binding site was quantitatively determined using the Langmuir equation. The results of the selectivity test showed that the MIPs produced was quite selective toward its enantiomer and could potentially be used to separate D-arabinitol from its enantiomer.

2020 ◽  
Vol 11 (1) ◽  
pp. 895-906 ◽  
Author(s):  
Roya Fathi Til ◽  
Mohammad Alizadeh-Khaledabad ◽  
Reza Mohammadi ◽  
Sajad Pirsa ◽  
Lee D. Wilson

Molecularly imprinted polymers (MIPs) were synthesized via a precipitation polymerization method using 4-vinylpyridine as a functional monomer and ethylene glycol dimethacrylate as a cross-linker for selective separation of sinapic acid from water.


2011 ◽  
Vol 399-401 ◽  
pp. 713-717 ◽  
Author(s):  
Xu Hong Jiang ◽  
Zhan Mei Liu

Uniformly-sized, molecularly imprinted polymers (MIPs) for (D)-naproxen have been prepared by a precipitation polymerization method using methacrylic acid (MAA) as a functional monomer and divinylbenzene (DVB) as a cross-linker in acetonitrile or a mixture of toluene and acetonitrile(1:3). The (D)-naproxen-imprinted MAA-co-DVB polymers were monodispersed microspheres with size in the range of 1.5 to 3.6µm. Enantioseparation of naproxen was attained using the (D)-naproxen-imprinted MAA-co-DVB polymer microspheres. When Ethylene glycol dimethacrylate(EGDMA) was used as a cross-linker, the MAA-co -EGDMA polymers were sub-microspheres with the average size of 350nm and showed very low affinity for the template (D)-naproxen . The (D)-naproxen-imprinted MAA-co-DVB polymer microspheres prepared in the mixture of toluene showed the highest molecular recognition ability and with the biggest size of 3.6µm.


2013 ◽  
Vol 785-786 ◽  
pp. 642-645
Author(s):  
Qing Shan Liu ◽  
Ke Qin Li ◽  
Jun Li ◽  
Xiao Ying Yin ◽  
Tian Hua Yan

To establish a novel method for preparing molecularly imprinted polymers for Picroside I with better performance on TCM research contrast to previous studies, we have prepared novel surface molecular imprinted polymers (S-MIPs) using Picroside I as the template molecule, Acrylamide (AM) as the functional monomer, and silica gel as the carrier. The morphology of S-MIPs was characterized by scanning electron microscope (SEM) and its static adsorption capacity was measured by the Scatchard equation.


2012 ◽  
Vol 535-537 ◽  
pp. 2400-2403 ◽  
Author(s):  
Qing Shan Liu ◽  
Li Na Yi ◽  
Qiu Juan Wang ◽  
Qing Long Guo ◽  
Yi Fan Jiang ◽  
...  

To establish a novel method for preparing molecularly imprinted polymers for ginsenoside Rg1 with better character contrast to previous studies, we have prepared novel surface molecular imprinted polymers (S-MIPs) using ginsenoside Rg1 as the template molecule, Acrylamide (AM) as the functional monomer, and silica gel as the carrier. The morphology of S-MIPs was characterized by scanning electron microscope (SEM) and its static adsorption capacity was measured by the Scatchard equation.


2014 ◽  
Vol 1052 ◽  
pp. 215-219 ◽  
Author(s):  
Huai Xiang Li ◽  
Wei Yao ◽  
Qiong Wu ◽  
Wen Sha Xia

In this work, A molecularly imprinted polymers (MIPs) electrochemical sensor based on chitosan (CS) and nickel electrode was constructed, finally used in glucose measurement. The MIPs sensor was prepared through electrodepositing glucose–CS composited film on the electrochemical treated nickel then removing glucose from the film via water elution. The morphology and electrochemical properties of the sensor were characterized via scanning electron microscope (SEM) , cyclic voltammetry (CV), respectively. Amperometric responses of the CS (MIP)-NiO electrode toward glucose was well-proportional to the concentration of the range from 10 μM to 200 μM. The developed sensor obtained the specific recognition to glucose against coexisting interferences such as oxalic acid, uric acid and ascorbic acid.


2014 ◽  
Vol 6 (16) ◽  
pp. 6397-6406 ◽  
Author(s):  
Xiaoyan Li ◽  
Mei Li ◽  
Junjie Li ◽  
Fuhou Lei ◽  
Xiaomeng Su ◽  
...  

A novel sample clean-up technique, i.e., molecularly imprinted solid-phase extraction (MISPE) combined with HPLC, was developed and validated for the selective extraction and determination of basic orange II in foods.


2012 ◽  
Vol 127 (4) ◽  
pp. 2884-2890 ◽  
Author(s):  
Xubiao Luo ◽  
Ruizhi Dong ◽  
Shenglian Luo ◽  
Youcai Zhan ◽  
Xinman Tu ◽  
...  

2014 ◽  
Vol 6 (23) ◽  
pp. 9483-9489 ◽  
Author(s):  
Xiao Zhang ◽  
Feng Shen ◽  
Zhe Zhang ◽  
Yue Xing ◽  
Xueqin Ren

A new bifunctional monomer acting as both a cross-linker and a functional monomer was synthesized and applied in the preparation of water-compatible naproxen sodium imprinted polymers.


Sign in / Sign up

Export Citation Format

Share Document