template molecule
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 61)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Chanadan Douykhumklaw ◽  
Thana Sutthibutpong

Abstract Molecularly imprinted polymers (MIP) are the polymers created by molecular imprinting techniques that leave cavities for the specific interactions with a template molecule, and have been applied in molecular selectivity tasks. In this study, the molecular dynamics (MD) simulation technique was used to demonstrate that aniline oligomer could be developed as a potential MIP for detection and separation of the spectinomycin drug molecule for gonorrhoea treatment. MD simulations were performed for the systems of a spectinomycin within aniline oligomers of different sizes. The mean square displacement (MSD) and the diffusivity calculated from MD simulations showed that the diffusion coefficient was significantly dropped when the length of aniline oligomer was greater than two. The diffusion coefficient of spectinomycin became the lowest within aniline trimers, corresponded to the highest atomic distribution of MIP around the template. Then, the specific cavity in MIP systems with and without spectinomycin were calculated to assess the stability of the cavity created by the template. The volume of a cavity created within the trimer system was closest to the spectinomycin volume, and therefore became the optimal oligomer size for further development of MIP.


2022 ◽  
Author(s):  
Xue Chen ◽  
Jinyue Chai ◽  
Baodong Sun ◽  
Xue Yang ◽  
Feng Zhang ◽  
...  

In this study, the carbon-based Cu2+-immobilized metal-organic framework modified molecularly imprinted polymer (C@GI@Cu-MOFs@MIPs) adsorbent was prepared using bovine hemoglobin (BHb) as a template molecule with carbon spheres as carriers for...


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 363
Author(s):  
Semra Akgönüllü ◽  
Handan Yavuz ◽  
Adil Denizli

Aflatoxins are a group of extremely toxic and carcinogenic substances generated by the mold of the genus Aspergillus that contaminate agricultural products. When dairy cows ingest aflatoxin B1 (AFB1)−contaminated feeds, it is metabolized and transformed in the liver into a carcinogenic major form of aflatoxin M1 (AFM1), which is eliminated through the milk. The detection of AFM1 in milk is very important to be able to guarantee food safety and quality. In recent years, sensors have emerged as a quick, low–cost, and reliable platform for the detection of aflatoxins. Plasmonic sensors with molecularly imprinted polymers (MIPs) can be interesting alternatives for the determination of AFM1. In this work, we designed a molecularly–imprinted–based plasmonic sensor to directly detect lower amounts of AFM1 in raw milk samples. For this purpose, we prepared gold–nanoparticle–(AuNP)−integrated polymer nanofilm on a gold plasmonic sensor chip coated with allyl mercaptan. N−methacryloyl−l−phenylalanine (MAPA) was chosen as a functional monomer. The MIP nanofilm was prepared using the light–initiated polymerization of MAPA and ethylene glycol dimethacrylate in the presence of AFM1 as a template molecule. The developed method enabled the detection of AFM1 with a detection limit of 0.4 pg/mL and demonstrated good linearity (0.0003 ng/mL–20.0 ng/mL) under optimized experimental conditions. The AFM1 determination was performed in random dairy farmer milk samples. Using the analogous mycotoxins, it was also demonstrated that the plasmonic sensor platforms were specific to the detection of AFM1.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dominic W. S. Wong

: Combinatorial chemistry involves the chemical or biological synthesis of libraries of the diverse structural population of a template molecule and the screening for the variants expressing desirable target properties. The approach has been a focus of research activity in modern drug discovery and biotechnology for accelerating the discovery and development of novel therapeutic and bioactive compounds. This review describes the application of combinatorial chemistry in enzyme technology as a novel technique and invention developed in our laboratory to construct oligosaccharide libraries in the conversion of plant fibers. The theory, mechanism, development, and application of this combinatorial enzyme approach are presented for the first time. The potential food and non-food uses of oligosaccharides are described. Citrus pectin and wheat insoluble fiber have been used as substrates for combinatorial enzyme reactions. Generation of libraries of structural variants of pectic oligosaccharides (oligoGalA) and feruloyl oligosaccharides (FOS) demonstrates the feasibility and usefulness of the technique in the transformation of plant biomass to value-added products.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8240
Author(s):  
Bixuan Wang ◽  
Jingyi Hong ◽  
Chun Liu ◽  
Liying Zhu ◽  
Ling Jiang

Facile detection of β-lactoglobulin is extraordinarily important for the management of the allergenic safety of cow’s milk and its dairy products. A sensitive electrochemical sensor based on a molecularly imprinted polymer-modified carbon electrode for the detection of β-lactoglobulin was successfully synthesized. This molecularly imprinted polymer was prepared using a hydrothermal method with choline chloride as a functional monomer, β-lactoglobulin as template molecule and ethylene glycol dimethacrylate as crosslinking agent. Then, the molecularly imprinted polymer was immobilized on polyethyleneimine (PEI)-reduced graphene oxide (rGO)-gold nanoclusters (Au-NCs) to improve the sensor’s selectivity for β-lactoglobulin. Under optimal experimental conditions, the designed sensor showed a good response to β-lactoglobulin, with a linear detection range between 10−9 and 10−4 mg/mL, and a detection limit of 10−9 mg/mL (S/N = 3). The developed electrochemical sensor showed a high correlation in the detection of β-lactoglobulin in four different milk samples from the market, indicating that the sensor can be used with actual sample.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ziqi Xie ◽  
Yunjing Luo ◽  
Zhen Na ◽  
Wei Zhang ◽  
Yufei Zong

AbstractIn this study, a novel method based on genistein magnetic molecularly imprinted polymers (Gen-MMIPs) was developed utilizing a surface molecular imprinting technique, in which genistein was used as the template molecule and Fe3O4 was used as the carrier. The synthesis of Gen-MMIPs was characterized by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which indicated that the diameter of the Gen-MMIPs was approximately 500 nm. Via analysis with a vibrating sample magnetometer (VSM), the saturation magnetization of Gen-MMIPs was determined to be 24.79 emu g−1. Fourier transform infrared (FT-IR) spectroscopy showed that polymer groups were on the surface of the magnetic carrier. Adsorption experiments suggested that the genistein adsorption capability of Gen-MMIPs was 5.81 mg g−1, and adsorption equilibrium was achieved within 20 min. Gen-MMIPs as dispersive solid-phase extraction (dSPE) adsorbents combined with HPLC were used to selectively separate genistein in soy sauce samples, and the recoveries ranged from 85.7 to 88.5% with relative standard deviations (RSDs) less than 5%, which proved that this method can be used for the detection of genistein residues in real samples.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi32-vi32
Author(s):  
Nicholas Stevers ◽  
Carter Barger ◽  
Olivia Lenzo ◽  
Chibo Hong ◽  
Andrew McKinney ◽  
...  

Abstract Tumor cell immortality is a fundamental hallmark of human cancers. Normally silenced during somatic cell differentiation, 90% of human tumors reactivate Telomerase Reverse Transcriptase (TERT) expression to achieve cellular immortality. TERT, the catalytic subunit of telomerase, complexes with the RNA template molecule TERC to maintain telomeres. Mutations in the TERT promoter (TERTp) are the most common non-coding mutation across all cancer types and the most frequent mutation within many cancers, such as IDH wildtype glioblastoma (GBM), Melanoma, and Bladder Cancer. TERTp mutations generate de novo E26 Transformation Specific (ETS) binding motifs that are spaced full helical turns from TERTp native ETS sites. Together the de novo and native ETS motifs specifically recruit the GABP tetrameric complex but not the GABP dimer. CRISPR-cas9 mediated insertion/deletion mutagenesis of the unique exon of GABP tetramer forming subunit, GABPB1L (B1L), reduces TERT transcriptional activity in a TERT promoter-mutation dependent manner. Here we show that GABPB1S (B1S), the GABP dimer restricted alternative isoform of GABPB1, is consistently and significantly increased following B1L reduction, a process we have determined to be driven by a conserved homeostatic mechanism whereby the GABP tetramer suppresses expression of one of its own components, GABPB1. In contrast to the native setting, in the absence of B1L the elevated B1S expression leads to dimer binding to the mutant TERTp and maintenance of TERT expression. Indeed, co-targeting B1L and B1S together, but not B1L alone, via CRISPR-cas9 knockout resulted in a near complete elimination of GABP recruitment to the TERTp and TERT expression, and lead to tumor cell death and eventual senescence in a telomere length dependent manner. Together, this data suggests a new model of the TERT-GABP axis involving the tetramer and dimer and highlights a new and potentially more potent therapeutic strategy to eliminate TERT expression and reverse tumor cell immortality.


Chemosensors ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 255
Author(s):  
Anna Herrera-Chacon ◽  
Andreu Gonzalez-Calabuig ◽  
Manel del Valle

This work reports a rapid, simple and low-cost voltammetric sensor based on a dummy molecularly imprinted polymer (MIP) that uses 2,4-dinitrophenol (DNP) as a template for the quantification of 2,4,6-trinitrotoluene (TNT) and DNP, and the identification of related substances. Once the polymer was synthesised by thermal precipitation polymerisation, it was integrated onto a graphite epoxy composite (GEC) electrode via sol–gel immobilisation. Scanning electron microscopy (SEM) was performed in order to characterise the polymer and the sensor surface. Responses towards DNP and TNT were evaluated, displaying a linear response range of 1.5 to 8.0 µmol L−1 for DNP and 1.3 to 6.5 µmol L−1 for TNT; the estimated limits of detection were 0.59 µmol L−1 and 0.29 µmol L−1, for DNP and TNT, respectively. Chemometric tools, in particular principal component analysis (PCA), demonstrated the possibilities of the MIP-modified electrodes in nitroaromatic and potential interfering species discrimination with multiple potential applications in the environmental field.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257042
Author(s):  
Sihua Peng ◽  
Shuyan Yang ◽  
Xi Zhang ◽  
Jingjing Jia ◽  
Qiulin Chen ◽  
...  

Imidacloprid is a neonicotinoid insecticide widely used in the production and cultivation of crops. In recent years, the extensive use of imidacloprid in agricultural production has resulted in large amounts of pesticide residues in agricultural products and the environment. Therefore, it is necessary to establish a rapid, accurate, sensitive and convenient method for detecting imidacloprid pesticide residues to ensure the safety of agricultural products and the environment. To clarify how to use the molecular imprinting method for the electrochemical rapid residue detection of imidacloprid. This paper selected reduced graphene oxide and gold nanoparticles as modifiers modified on screen-printed carbon electrodes (SPCE) chitosan as a functional monomer, and imidacloprid as template molecule to prepare molecularly imprinted polymer, and applied this sensor to the residue detection of imidacloprid. The results showed that the concentration of imidacloprid showed a good linear relationship with the peak response current, and the detection limit of imidacloprid was 0.5 μM, while the sensor had good repeatability and interference resistance. The recoveries of imidacloprid spiked on three samples, mango, cowpea and water, were in the range of 90–110% (relative standard deviation, RSD<5%), which proved the practicality and feasibility of the assay established in this paper. The results of this paper can be used as a basis for the research on the detection of imidacloprid pesticide residues in food or environment.


Sign in / Sign up

Export Citation Format

Share Document