Preparation of water-compatible molecularly imprinted polymers for caffeine with a novel ionic liquid as a functional monomer

2012 ◽  
Vol 127 (4) ◽  
pp. 2884-2890 ◽  
Author(s):  
Xubiao Luo ◽  
Ruizhi Dong ◽  
Shenglian Luo ◽  
Youcai Zhan ◽  
Xinman Tu ◽  
...  
2021 ◽  
Author(s):  
Xiaohan Zhang ◽  
Le Gao ◽  
Liying Niu ◽  
Xiaodong Bi

Molecularly imprinted polymers (MIPs) possess target-customized and range-adjustable selectivity, and hence have been attracting increasing efforts to develop new synthetic methods and new forms of applications. By wisely choosing functional...


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Shanwen Zhao ◽  
Chanling Wei ◽  
Zhian Sun ◽  
Huachun Liu ◽  
Yanqiang Zhou ◽  
...  

Chloramphenicol- (CAP-) restricted access media-molecularly imprinted polymers (CAP-RAM-MIPs) were prepared by precipitation polymerization using CAP as a template molecule, 2-diethylaminoethyl methacrylate (DEAEM) as a functional monomer, ethylene glycol dimethyl acrylate (EDMA) as a crosslinking agent, glycidyl methacrylate (GMA) as an outer hydrophilic functional monomer, and acetonitrile as a pore former and solvent. The CAP-RAM-MIPs were successfully characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The adsorption performance was investigated in detail using static, dynamic, and selective adsorption experiments. Adsorption equilibrium could be reached within 11 min. The CAP-RAM-MIPs had a high adsorption rate and good specific adsorption properties. Scatchard fitting curves indicated there were two binding sites for CAP-RAM-MIPs. Adsorption was Freundlich multilayer adsorption and consistent with the quasi-second kinetic model. Using CAP-RAM-MIPs for selective separation and enrichment CAP in bovine serum in combination with high-performance liquid chromatography (HPLC), CAP recovery ranged from 94.1 to 97.9% with relative standard deviations of 0.7–1.5%. This material has broad application prospects in enrichment and separation.


2008 ◽  
Vol 24 (1) ◽  
pp. 155-161 ◽  
Author(s):  
Javier L. Urraca ◽  
María C. Carbajo ◽  
María J. Torralvo ◽  
Jesús González-Vázquez ◽  
Guillermo Orellana ◽  
...  

2010 ◽  
Vol 150-151 ◽  
pp. 150-159
Author(s):  
Hong Xing Dong ◽  
Fei Tong ◽  
Jun Qing Li ◽  
Zhen Xing Wang ◽  
Yan Hui Wang ◽  
...  

Polymers imprinted with (S)-(-)-1,1’-bi (2-naphthol) and (R)-(+)-1,1’-bi (2-naphthol) have been prepared by non-covalent imprinting. A combinational procedure was used to optimize the functional monomer and crosslinker. A copolymer of 2-vinylpyridine and divinylbenzene resulted in the best chiral recognition. The ratio of template to functional monomer and solvent in the pre-polymerization mixture were also optimized. The imprinted polymers were used as stationary phases in high-performance liquid chromatography (HPLC). The molecularly imprinted polymers (MIPs) were more selective when prepared using a less polar solvent. Effective separations of the enantiomers of racemic (±)-1, 1’-Bi (2-naphthol) were achieved by use of acetonitrile as mobile phase; no cross-selectivity was observed. Interactions between functional monomers and template were investigated by 1H NMR spectroscopy. The results suggest that hydrogen-bonding between the functional monomer and the template and π-π stacking interaction between the cross-linker and the template may contribute to chiral recognition.


Sign in / Sign up

Export Citation Format

Share Document