IMPLEMENTATION OF AN ACADEMIC INNOVATION PROJECT IN A BIOMEDICAL SCIENCE COURSE

Author(s):  
Paula Moiana da Costa ◽  
Samia Akel ◽  
Ligia Alves da Costa Cardoso ◽  
Rodrigo Napoli
Author(s):  
Priscilla Song

Thousands of people from more than eighty countries have traveled to China since 2001 to undergo fetal cell transplantation. Galvanized by the potential of stem and fetal cells to regenerate damaged neurons and restore lost bodily functions, people grappling with paralysis and neurodegenerative disorders have ignored the warnings of doctors and scientists back home in order to stake their futures on a Chinese experiment. This book looks at why and how these individuals have entrusted their lives to Chinese neurosurgeons operating at the forefront of experimental medicine, in a world where technologies and risks move faster than laws can keep pace. The book shows how cutting-edge medicine is not just about the latest advances in biomedical science but also encompasses transformations in online patient activism, surgical intervention, and borderline experiments in health care bureaucracy. The book opens up important theoretical and methodological horizons in the anthropology of science, technology, and medicine. It illuminates how poignant journeys in search of fetal cell cures become tangled in complex webs of digital mediation, the entrepreneurial logics of postsocialist medicine, and fraught debates about the ethics of clinical experimentation. Using innovative methods to track the border-crossing quests of Chinese clinicians and their patients from around the world, the book maps the transnational life of fetal cell therapies.


2019 ◽  
Author(s):  
Lude Wang ◽  
Xiang Chen ◽  
Shaodong Zhang ◽  
Taojian Fan ◽  
Nasir Mahmood Abbasi ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Munair Badshah ◽  
Hanif Ullah ◽  
Fazli Wahid ◽  
Taous Khan

Background: Bacterial cellulose (BC) is purest form of cellulose as it is free from pactin, lignin, hemicellulose and other active constituents associated with cellulose derived from plant sources. High biocompatibility and easy molding into desired shape make BC an ideal candidate for applications in biomedical field such as tissue engineering, wound healing and bone regeneration. In addition to this, BC has been widely studied for applications in the delivery of proteins and drugs in various forms via different routes. However, BC lacks therapeutic properties and resistance to free movement of small molecules i.e., gases and solvents. Therefore, modification of BC is required to meet the research ad market demand. Methods: We have searched the updated data relevant to as-synthesized and modified BC, properties and applications in various fields using Web of science, Science direct, Google and PubMed. Results: As-synthesized BC possesses properties such as high crystallinity, well organized fibrous network, higher degree of polymerization, and ability of being produced in swollen form. The large surface area with abundance of free accessible hydroxyl groups makes BC an ideal candidate for carrying out surface functionalization to enhance its features. The various reported surface modification techniques including, but not limited to, are amination, methylation and acetylation. Conclusion: In this review, we have highlighted various approaches made for BC surface modification. We have also reported enhancement in the properties of modified BC and potential applications in different fields ranging from biomedical science to drug delivery and paper-making to various electronic devices.


Sign in / Sign up

Export Citation Format

Share Document