PROTOLITH COMPOSITION OF CORDIERITE-GEDRITE BASEMENT ROCKS AND GARNET AMPHIBOLITE OF THE BEARPAW LAKE AREA OF THE THOR-ODIN DOME, MONASHEE COMPLEX, BRITISH COLUMBIA, CANADA

2007 ◽  
Vol 45 (3) ◽  
pp. 607-629 ◽  
Author(s):  
A. M. Hinchey ◽  
S. D. Carr
1984 ◽  
Vol 21 (6) ◽  
pp. 731-736 ◽  
Author(s):  
Nathan L. Green ◽  
Paul Henderson

A suite of hy-normative hawaiites, ne-normative mugearite, and calc-alkaline andesitic rocks from the Garibaldi Lake area exhibits fractionated, slightly concave-upward REE patterns (CeN/YbN = 4.5–15), heavy REE contents about 5–10 times the chondritic abundances, and no Eu anomalies. It is unlikely that the REE patterns provide information concerning partial melting conditions beneath southwestern British Columbia because they have probably been modified substantially by upper crustal processes including crustal contamination and (or) crystal fractionation. The REE contents of the Garibaldi Lake lavas are not incompatible with previous interpretations that (1) the hawaiites have undergone considerable fractionation of olivine, plagioclase, and clinopyroxene; and (2) the individual andesitic suites were derived from separate batches of chemically distinct magma that evolved along different high-level crystallization trends. In general, however, the andesites are characterized by lower light REE contents than the basaltic andesites. These differences in LREE abundances may reflect different amounts of LREE-rich accessory phases, such as apatite, sphene, or allanite, assimilated from the underlying quartz diorites.


2001 ◽  
Vol 38 (4) ◽  
pp. 719-731 ◽  
Author(s):  
A Plouffe ◽  
V M Levson

The Quaternary stratigraphy of the Nechako River – Cheslatta Lake area of central British Columbia is described and interpreted to reconstruct the late Quaternary history of the region. Exposures of glacial and nonglacial sediments deposited prior to the last glaciation (Fraser) are limited to three sites. Pollen assemblages from pre-Fraser nonglacial sediments at two of these sites reveal forested conditions around 39 000 BP. During the advance phase of the Fraser Glaciation, glacial lakes were ponded when trunk glaciers blocked some tributary valleys. Early in the glaciation, the drainage was free in easterly draining valleys. Subsequently, the easterly drainage was blocked either locally by sediments and ice or as a result of impoundment of the Fraser River and its tributaries east of the study area. Ice generally moved east and northeast from accumulation zones in the Coast Mountains. Ice flow was influenced by topography. Major late-glacial lakes developed in the Nechako River valley and the Knewstubb Lake region because potential drainage routes were blocked by ice.


1989 ◽  
Vol 26 (2) ◽  
pp. 231-243 ◽  
Author(s):  
Larry S. Lane ◽  
Edward D. Ghent ◽  
Mavis Z. Stout ◽  
Richard L. Brown

Microstructural and petrofabric analyses of mylonites from the Monashee Décollement demonstrate that the hanging wall was displaced eastward over the footwall. Microstructural kinematic indicators include shear-band foliation, asymmetric strain shadows, and S–C fabrics. Quartz c axes locally exhibit asymmetric fabrics that are consistent with the microstructural evidence for sense of shear. The kinematic evidence is reliable because multiple criteria coexist within individual specimens.Metamorphic assemblages from footwall Monashee Complex pelites at the Revelstoke damsite indicate that the peak metamorphic assemblage was sillimanite–K-feldspar–biotite–almandine–quartz ± plagioclase. Biotite–garnet geothermometry and garnet–plagioclase–sillimanite–quartz geobarometry set broad constraints on metamorphic temperatures but closer constraints on pressures, near 650 °C and 630 MPa.Comparison of these data with Late Cretaceous hornblende cooling ages from the same locality indicates that the metamorphism is at least as old as Late Cretaceous. Complex microstructures relating to repeated mylonitization and annealing render difficult the correlation of metamorphic conditions with mylonitic fabrics. Early mylonitic textures predate the metamorphic equilibration and thus are pre-Late Cretaceous in age. Postmetamorphic mylonites are well preserved, but their ages are poorly constrained. The present interpretation favours a Late Cretaceous to Paleocene age relating to compressional tectonics. However, an Early Eocene age relating to extensional shearing cannot be excluded.


2016 ◽  
Vol 64 (3) ◽  
pp. 467-476 ◽  
Author(s):  
M. McMechan ◽  
W. Matthews ◽  
F. Ferri ◽  
B. Guest ◽  
Larry Lane
Keyword(s):  

1980 ◽  
Vol 17 (6) ◽  
pp. 681-689 ◽  
Author(s):  
George Plafker ◽  
Travis Hudson

A low-grade metamorphic sequence consisting of thick mafic volcanic rocks overlain by calcareous flysch with very minor limestone underlies much of the Chilkat Peninsula. Fossils collected from both units are of Triassic age, probably late Karnian. This sequence appears to be part of the Taku terrane, a linear tectono-stratigraphic belt that now can be traced for almost 700 km through southeastern Alaska to the Kelsall Lake area of British Columbia. The age and gross lithology of the Chilkat Peninsula sequence are comparable to Upper Triassic rocks that characterize the allochthonous tectono-stratigraphic terrane named Wrangellia. This suggests either that the two terranes are related in their history or that they are allochthonous with respect to one another and coincidentally evolved somewhat similar sequences in Late Triassic time.


Sign in / Sign up

Export Citation Format

Share Document