P–T history and kinematics of the Monashee Décollement near Revelstoke, British Columbia

1989 ◽  
Vol 26 (2) ◽  
pp. 231-243 ◽  
Author(s):  
Larry S. Lane ◽  
Edward D. Ghent ◽  
Mavis Z. Stout ◽  
Richard L. Brown

Microstructural and petrofabric analyses of mylonites from the Monashee Décollement demonstrate that the hanging wall was displaced eastward over the footwall. Microstructural kinematic indicators include shear-band foliation, asymmetric strain shadows, and S–C fabrics. Quartz c axes locally exhibit asymmetric fabrics that are consistent with the microstructural evidence for sense of shear. The kinematic evidence is reliable because multiple criteria coexist within individual specimens.Metamorphic assemblages from footwall Monashee Complex pelites at the Revelstoke damsite indicate that the peak metamorphic assemblage was sillimanite–K-feldspar–biotite–almandine–quartz ± plagioclase. Biotite–garnet geothermometry and garnet–plagioclase–sillimanite–quartz geobarometry set broad constraints on metamorphic temperatures but closer constraints on pressures, near 650 °C and 630 MPa.Comparison of these data with Late Cretaceous hornblende cooling ages from the same locality indicates that the metamorphism is at least as old as Late Cretaceous. Complex microstructures relating to repeated mylonitization and annealing render difficult the correlation of metamorphic conditions with mylonitic fabrics. Early mylonitic textures predate the metamorphic equilibration and thus are pre-Late Cretaceous in age. Postmetamorphic mylonites are well preserved, but their ages are poorly constrained. The present interpretation favours a Late Cretaceous to Paleocene age relating to compressional tectonics. However, an Early Eocene age relating to extensional shearing cannot be excluded.

1999 ◽  
Vol 36 (12) ◽  
pp. 1989-2006 ◽  
Author(s):  
Maurice Colpron ◽  
Raymond A Price ◽  
Douglas A Archibald

40Ar/39Ar thermochronometry from the Clachnacudainn complex indicates that the thermal evolution of the complex was controlled primarily by the intrusion of granitoid plutons in mid- and Late Cretaceous times. Hornblendes from the eastern part of the complex cooled below their Ar closure temperature (ca. 500°C) shortly after intrusion of the mid-Cretaceous plutons; those from the western part of the complex have latest Cretaceous cooling dates, indicating cooling of these hornblendes after intrusion of the leucogranite plutons at ca. 71 Ma. Micas from the southern Clachnacudainn complex exhibit a pattern of progressive cooling toward lower structural levels, where Late Cretaceous and younger intrusions occur. The occurrence of Late Cretaceous - Paleocene mica cooling dates in both the hanging wall and footwall of the Standfast Creek fault refutes the hypothesis that there has been significant Tertiary extensional exhumation of the Clachnacudainn complex along the Standfast Creek fault. Furthermore, the widespread distribution of Late Cretaceous - Paleocene mica cooling ages suggests that an important volume of Late Cretaceous - early Tertiary intrusive rocks must be present in the subsurface beneath the Clachnacudainn complex.


2016 ◽  
Vol 53 (6) ◽  
pp. 591-604 ◽  
Author(s):  
Cale A.C. Gushulak ◽  
Christopher K. West ◽  
David R. Greenwood

Early Eocene fossil floras from British Columbia are a rich resource for reconstructing western North American early Cenozoic climate. The best known of these floras reflect cooler (MAT ≤ 15 °C) upland forest communities in contrast to coeval (MAT ≥ 18 °C) forests in lowland western North American sites. Of particular interest is whether Early Eocene climates were monsoonal (highly seasonal precipitation). The McAbee site is a 52.9 ± 0.83 Ma 0.5 km outcrop of bedded lacustrine shale interbedded with volcanic ash. In this report two historical megaflora collections that were collected independently from different stratigraphic levels and (or) laterally separated by ∼100–200 m in the 1980s (University of Saskatchewan) and 2000s (Brandon University) are investigated to (i) assess whether they represent the same leaf population, (ii) assess whether a combined collection yields more precise climate estimates, and (iii) reconstruct paleoclimate to assess the character of regional Early Eocene precipitation seasonality. Combined, the two samples yielded 43 dicot leaf morphotypes. Analysis of leaf size distribution using ANOVA showed no difference between the two samples, and thus they were combined for climate analysis. Climate analysis using leaf physiognomy agrees with previous estimates for McAbee and other regional megafloras, indicating a warm (MAT ∼8–13 °C), mild (CMMT ∼5 °C), moist (MAP > 100 cm/year) ever-wet, non-monsoonal climate. Additionally, we recommend that climate analyses derived from leaf fossils should be based on samples collected within a stratigraphically constrained quarry area to capture a snapshot of climate in time rather than time-averaged estimates derived from multiple quarry sites representing different stratigraphic levels within a fossil site.


1992 ◽  
Vol 29 (1) ◽  
pp. 3-14 ◽  
Author(s):  
G. Beaudoin ◽  
J. C. Roddick ◽  
D. F. Sangster

The Ag–Pb–Zn–Au vein and replacement deposits of the Kokanee Range, southeastern British Columbia, are hosted by the Middle Jurassic Nelson batholith and surrounding Cambrian to Triassic metasedimentary rocks in the hanging wall of the transcrustal Slocan Lake Fault, Field relations indicate that mineralization is younger than the Nelson batholith and a Middle Jurassic foliation in the Ainsworth area but coeval or older than Eocene unroofing of the Valhalla metamorphic core complex in the footwall of the Slocan Lake Fault. Lamprophyre and gabbro dykes are broadly coeval with mineralization and have biotite and hornblende K–Ar ages defining a short-lived Middle Eocene alkaline magmatic event between 52 and 40 Ma. An older, Early Cretaceous alkaline magmatic event (141 – 129 Ma) is possible but incompletely documented.K–Ar and step-heating 40Ar/39Ar analyses on hydrothermal vein and alteration muscovite indicate that hydrothermal fluids were precipitating vein and replacement deposits 58–59 Ma ago. Crosscutting relationships with lamprophyre dykes indicate the Kokanee Range hydrothermal system lasted for more than 15 Ma. Eocene crustal extension resulted in a high heat flow and structures which were probably responsible for hydrothermal fluid movement and flow paths.A 100 Ma time interval is documented between batholith emplacement and spatially associated mineralization, ruling out any genetic link between the two. Similar large age differences between granite intrusion and peripheral mineralization have recently been documented for two world-sea le Ag–Pb–Zn vein districts, which suggest that spatial association between granite and Ag–Pb–Zn mineralization is not sufficient to infer a genetic link.


Author(s):  
Jordan A. Roberts ◽  
Lee A. Groat ◽  
Paul G. Spry ◽  
Jan Cempírek

ABSTRACT The Deer Horn deposit, located 150 km south of Smithers in west-central British Columbia, is an Eocene polymetallic system enriched in Au-Ag-Te with lesser amounts of Bi-Pb-W; the Au and Ag are hosted in Te-bearing minerals and Ag-rich gold (Au-Ag alloy). A quartz-sulfide vein system containing the main zones of Au-Ag-Te mineralization and attendant sericite alteration occurs in the hanging wall of a local, spatially related thrust fault and is genetically related to the nearby Eocene Nanika granodiorite intrusive suite. Tellurium-bearing minerals commonly form isolated euhedral to subhedral grains or composite grains (up to 525 μm in size) of Ag-, Bi-, Pb-, and Au-rich tellurium-bearing minerals (e.g., hessite, tellurobismuthite, volynskite, altaite, and petzite). Panchromatic cathodoluminescence imaging revealed four generations of quartz. Within remnant cores of quartz I, local oscillatory zoning occurs in quartz II. Fine-grained veinlets of quartz III and IV crosscut quartz I and II, showing evidence of at least two deformation events; late-forming veinlets of calcite crosscut all generations of quartz. The tellurides and Ag-rich gold occur in stage III quartz. Three types of fluid inclusions were observed in stage III and IV quartz: (1) aqueous liquid and vapor inclusions (L-V); (2) aqueous carbonic inclusions (L-L-V); and (3) carbonic inclusions (vapor-rich). Primary fluid inclusions related to the telluride mineralization within quartz III were tested with microthermometry, along with a few primary inclusions from quartz IV. Homogenization temperatures are 130.0–240.5 °C for L-V inclusions and 268.0–336.4 °C for L-L-V inclusions. Aqueous carbonic inclusions had solid CO2 melting temperatures from –62.1 to –56.8 °C, indicating the presence of ≈1 to 30 mol.% dissolved methane in these inclusions. The Deer Horn Au-Ag-Te-(Bi-Pb-W) deposit is a reduced intrusion-related gold system characterized by sheeted veins, metal zoning, low salinity aqueous-carbonic fluids, and a genetic relationship to an Eocene granodiorite. Values of δ34S of pyrite vary from –1.6 to 1.6 per mil and are compatible with a magmatic source of sulfur.


1991 ◽  
Vol 103 (10) ◽  
pp. 1297-1307 ◽  
Author(s):  
RALPH A. HAUGERUD ◽  
PETER VAN DER HEYDEN ◽  
ROWLAND W. TABOR ◽  
JOHN S. STACEY ◽  
ROBERT E. ZARTMAN

1987 ◽  
Vol 61 (1) ◽  
pp. 70-100 ◽  
Author(s):  
W. P. Popenoe ◽  
L. R. Saul ◽  
Takeo Susuki

Seven previously described and seven new taxa of gyrodiform naticoids from West Coast Late Cretaceous–Paleocene age strata are discussed. Gyrodes (Gyrodes) dowelli White of Turonian age is a typical Gyrodes; G. robustus Waring from the Paleocene has the shape of Gyrodes s.s. but lacks the crenulations. G. greeni Murphy and Rodda, G. yolensis n. sp., G. quercus n. sp., G. banites n. sp., G. canadensis Whiteaves, G. pacificus n. sp., and G. expansus Gabb comprise the new subgenus Sohlella, which thus ranges from Cenomanian through Maastrichtian. Gyrodes robsauli n. sp. resembles “Polinices” (Hypterita) helicoides (Gray), and Hypterita is reassigned to the Gyrodinae as a subgenus of Gyrodes. Gyrodes onensis n. sp. of Albian age is similar to the G. americanus group of Sohl (1960). Three texa—Natica allisoni (Murphy and Rodda) of Cenomanian age and N. conradiana Gabb and N. conradiana vacculae n. subsp. of Turonian age—which have all been previously considered to be Gyrodes are placed in Natica. Well marked relict color patterns on N. conradiana and N. conradiana vacculae suggest that these naticids from northern California and southern British Columbia were tropical forms.Diversity of taxa and size of specimens are reduced at the end of the Turonian, suggesting a change in West Coast marine conditions at that time.


Sign in / Sign up

Export Citation Format

Share Document