Early Late Cretaceous-early Tertiary gold mineralization; a galena lead isotope study of the Bridge River mining camp, southwestern British Columbia, Canada

1989 ◽  
Vol 84 (8) ◽  
pp. 2226-2236 ◽  
Author(s):  
C. H. B. Leitch ◽  
C. I. Godwin ◽  
K. M. Dawson
1991 ◽  
Vol 103 (10) ◽  
pp. 1297-1307 ◽  
Author(s):  
RALPH A. HAUGERUD ◽  
PETER VAN DER HEYDEN ◽  
ROWLAND W. TABOR ◽  
JOHN S. STACEY ◽  
ROBERT E. ZARTMAN

2016 ◽  
Vol 53 (1) ◽  
pp. 10-33 ◽  
Author(s):  
Lijuan Liu ◽  
Jeremy P. Richards ◽  
S. Andrew DuFrane ◽  
Mark Rebagliati

Newton is an intermediate-sulfidation epithermal gold deposit related to Late Cretaceous continental-arc magmatism in south-central British Columbia. Disseminated gold mineralization occurs in quartz–sericite-altered Late Cretaceous felsic volcanic rocks, and feldspar–quartz–hornblende porphyry and quartz–feldspar porphyry intrusions. The mineralization can be divided into three stages: (1) disseminated pyrite with microscopic gold inclusions, and sparse quartz–pyrite ± molybdenite veins; (2) disseminated marcasite with microscopic gold inclusions and minor base-metal sulfides; and (3) polymetallic veins of pyrite–chalcopyrite–sphalerite–arsenopyrite. Re–Os dating of molybdenite from a stage 1 vein yielded an age of 72.1 ± 0.3 Ma (published by McClenaghan in 2013). The age of the host rocks has been constrained by U–Pb dating of zircon: Late Cretaceous felsic volcanic rocks, 72.1 ± 0.6 Ma (Amarc Resources Ltd., unpublished data, reported by McClenaghan in 2013); feldspar–quartz–hornblende porphyry, 72.1 ± 0.5 Ma; quartz–feldspar porphyry, 70.9 ± 0.5 Ma (Amarc Resources Ltd., unpublished data, reported by McClenaghan in 2013). The mineralized rocks are intruded by a barren diorite, with an age of 69.3 ± 0.4 Ma. Fluid inclusions in quartz–pyrite ± molybdenite ± gold veins yielded an average homogenization temperature of 313 ± 51 °C (number of samples, n = 82) and salinity of 4.8 ± 0.9 wt.% NaCl equiv. (n = 46), suggesting that a relatively hot and saline fluid likely of magmatic origin was responsible for the first stage of mineralization. Some evidence for boiling was also observed in the veins. However, the bulk of the gold mineralization occurs as disseminations in the wall rocks, suggesting that wall-rock reactions were the main control on ore deposition.


1985 ◽  
Vol 22 (2) ◽  
pp. 154-174 ◽  
Author(s):  
Karen L. Kleinspehn

The Mesozoic Tyaughton–Methow Basin straddles the Fraser–Yalakom–Pasayten – Straight Creek (FYPSC) strike-slip fault zone between six tectono-stratigraphic terranes in southwestern British Columbia. Data from Hauterivian–Cenomanian basin fill provide constraints for reconstruction of fault displacement and paleogeography.The Early Cretaceous eastern margin of the basin was a region of uplifted Jurassic plutons and active intermediate volcanism. Detritus shed southwestward from that margin was deposited as the marine Jackass Mountain Group. Albian inner to mid-fan facies of the Jackass Mountain Group can be correlated across the Yalakom Fault, suggesting 150 ± 25 km of post- Albian dextral offset. Deposits of the Jackass Mountain Group overlap the major strike- slip zone (FYPSC). If that zone represents the eastern boundary of the tectono-stratigraphic terrane, Wrangellia, then accretion of Wrangellia to terranes to the east occurred before late Early Cretaceous time.The western margin of the basin first became prominent with Cenomanian uplift of the Coast Mountain suprastructure. Uplift is recorded by dispersal patterns of the volcaniclastic Kingsvale Group southwest of the Yalakom Fault.Reversing 110 km of Late Cretaceous – early Tertiary dextral motion on the Fraser – Straight Creek Fault followed by 150 km of Cenomanian – Turonian motion on the Yalakom – Ross Lake Fault restores the basin to a reasonable depositional configuration.


2015 ◽  
Vol 89 (6) ◽  
pp. 1914-1925 ◽  
Author(s):  
ENDUT Zakaria ◽  
NG Tham Fatt ◽  
ABDUL AZIZ Jasmi Hafiz ◽  
MEFFRE Sebastien ◽  
MAKOUNDI Charles

1986 ◽  
Vol 23 (9) ◽  
pp. 1455-1458 ◽  
Author(s):  
Dale A. Sketchley ◽  
A. J. Sinclair ◽  
C. I. Godwin

K–Ar dates on sericite from several gold–silver bearing white quartz veins in the Cassiar area indicate that mineralization occurred in the Early Cretaceous at about 130 Ma. Thus, these veins predate the mid-Cretaceous Cassiar batholith and Late Cretaceous and early Tertiary plutons in the immediate area. The Early Cretaceous date probably represents either a thermal precursor to emplacement of the Cassiar batholith or a structurally related event associated with allochthonous emplacement of the Sylvester Group. Either of these events may have caused circulation of the meteoric fluids responsible for the veins.


Sign in / Sign up

Export Citation Format

Share Document