scholarly journals Geochemistry, geochronology, and fluid inclusion study of the Late Cretaceous Newton epithermal gold deposit, British Columbia

2016 ◽  
Vol 53 (1) ◽  
pp. 10-33 ◽  
Author(s):  
Lijuan Liu ◽  
Jeremy P. Richards ◽  
S. Andrew DuFrane ◽  
Mark Rebagliati

Newton is an intermediate-sulfidation epithermal gold deposit related to Late Cretaceous continental-arc magmatism in south-central British Columbia. Disseminated gold mineralization occurs in quartz–sericite-altered Late Cretaceous felsic volcanic rocks, and feldspar–quartz–hornblende porphyry and quartz–feldspar porphyry intrusions. The mineralization can be divided into three stages: (1) disseminated pyrite with microscopic gold inclusions, and sparse quartz–pyrite ± molybdenite veins; (2) disseminated marcasite with microscopic gold inclusions and minor base-metal sulfides; and (3) polymetallic veins of pyrite–chalcopyrite–sphalerite–arsenopyrite. Re–Os dating of molybdenite from a stage 1 vein yielded an age of 72.1 ± 0.3 Ma (published by McClenaghan in 2013). The age of the host rocks has been constrained by U–Pb dating of zircon: Late Cretaceous felsic volcanic rocks, 72.1 ± 0.6 Ma (Amarc Resources Ltd., unpublished data, reported by McClenaghan in 2013); feldspar–quartz–hornblende porphyry, 72.1 ± 0.5 Ma; quartz–feldspar porphyry, 70.9 ± 0.5 Ma (Amarc Resources Ltd., unpublished data, reported by McClenaghan in 2013). The mineralized rocks are intruded by a barren diorite, with an age of 69.3 ± 0.4 Ma. Fluid inclusions in quartz–pyrite ± molybdenite ± gold veins yielded an average homogenization temperature of 313 ± 51 °C (number of samples, n = 82) and salinity of 4.8 ± 0.9 wt.% NaCl equiv. (n = 46), suggesting that a relatively hot and saline fluid likely of magmatic origin was responsible for the first stage of mineralization. Some evidence for boiling was also observed in the veins. However, the bulk of the gold mineralization occurs as disseminations in the wall rocks, suggesting that wall-rock reactions were the main control on ore deposition.

Lithos ◽  
2011 ◽  
Vol 127 (3-4) ◽  
pp. 564-580 ◽  
Author(s):  
Iris Sonntag ◽  
Robert Kerrich ◽  
Steffen G. Hagemann

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 250
Author(s):  
Chuanpeng Liu ◽  
Wenjie Shi ◽  
Junhao Wei ◽  
Huan Li ◽  
Aiping Feng ◽  
...  

The Longquanzhan deposit is one of the largest gold deposits in the Yi-Shu fault zone (central section of the Tan-Lu fault zone) in Shandong Province, China. It is an altered-rock type gold deposit in which ore bodies mainly occur at the contact zone between the overlying Cretaceous rocks and the underlying Neoarchean gneissic monzogranite. Shi et al. reported that this deposit formed at 96 ± 2 Ma using pyrite Rb–Sr dating method and represents a new gold mineralization event in the Shandong Province in 2014. In this paper, we present new He–Ar–S isotopic compositions to further decipher the sources of fluids responsible for the Longquanzhan gold mineralization. The results show that the δ34S values of pyrites vary between 0.9‰ and 4.4‰ with an average of 2.3‰. Inclusion-trapped fluids in ore sulfides have 3He/4He and 40Ar/36Ar ratios of 0.14–0.78 Ra and 482–1811, respectively. These isotopic data indicate that the ore fluids are derived from a magmatic source, which is dominated by crustal components with minor mantle contribution. Air-saturated water may be also involved in the hydrothermal system during the magmatic fluids ascending or at the shallow deposit site. We suggest that the crust-mantle mixing signature of the Longquanzhan gold deposit is genetically related to the Late Cretaceous lithospheric thinning along the Tan-Lu fault zone, which triggers constantly uplifting of the asthenosphere surface and persistent ascending of the isotherm plane to form the gold mineralization-related crustal level magma sources. This genetic model can be applied, to some extent, to explain the ore genesis of other deposits near or within the Tan-Lu fault belt.


2021 ◽  
Vol 62 (10) ◽  
pp. 1175-1187
Author(s):  
A.D. Nozhkin ◽  
O.M. Turkina ◽  
K.A. Savko

Abstract —The paper presents results of a petrogeochemical and isotope–geochronological study of the granite–leucogranite association of the Pavlov massif and felsic volcanics from the Elash graben (Biryusa block, southwest of the Siberian craton). A characteristic feature of the granite–leucogranites is their spatial and temporal association with vein aplites and pegmatites of the East Sayan rare-metal province. The U–Pb age of zircon from granites of the Pavlov massif (1852 ± 5 Ma) is close to the age of the pegmatites of the Vishnyakovskoe rare-metal deposit (1838 ± 3 Ma). The predominant biotite porphyritic granites and leucogranites of the Pavlov massif show variable alkali ratios (K2O/Na2O = 1.1–2.3) and ferroan (Fe*) index and a peraluminous composition; they are comparable with S-granites. The studied rhyolites of the Tagul River (SiO2 = 71–76%) show a low ferroan index, a high K2O/Na2O ratio (1.6–4.0), low (La/Yb)n values (4.3–10.5), and a clear Eu minimum (Eu/Eu* = 0.3–0.5); they are similar to highly fractionated I-granites. All coeval late Paleoproterozoic (1.88–1.85 Ga) granites and felsic volcanics of the Elash graben have distinct differences in composition, especially in the ferroan index and HREE contents, owing to variations in the source composition and melting conditions during their formation at postcollisions extension. The wide range of the isotope parameters of granites and felsic volcanic rocks (εNd from +2.0 to –3.7) and zircons (εHf from +3.0 to +0.8, granites of the Toporok massif) indicates the heterogeneity of the crustal basement of the Elash graben, which formed both in the Archean and in the Paleoproterozoic.


1998 ◽  
Vol 60 (3) ◽  
pp. 207-227 ◽  
Author(s):  
J.C Carlile ◽  
G.R Davey ◽  
I Kadir ◽  
R.P Langmead ◽  
W.J Rafferty

Sign in / Sign up

Export Citation Format

Share Document