Incised valleys and tidal seaways: the example of the Miocene Uzès-Castillon basin, SE France

2012 ◽  
Vol 183 (5) ◽  
pp. 471-486 ◽  
Author(s):  
Jean-Yves Reynaud ◽  
Emmanuelle Vennin ◽  
Olivier Parize ◽  
Jean-Loup Rubino ◽  
Chantal Bourdillon

Abstract The sedimentology and stratigraphy of the Miocene deposits of the Uzès-Castillon basin are revisited. This basin, located in SE France at the junction between the perialpine foreland basin and the W Mediterranean margin, sits in a syncline that formed during the latest Cretaceous Pyrenean tectonic phase. It records the succession of shallow-water mixed siliciclastic to dominantly bioclastic carbonates that alternate with shelf marls. The clastic carbonates were accumulated as a stack of subtidal dunes and bars that were formed by tidal currents channelized in a seaway following the syncline axis. The marls indicate deposition in more protected and locally deeper waters, as interfluves of the sea-way were drowned. Borehole data suggest that the marls are encased over tens of meters in the underlying bioclastic deposits, thus pointing to incised-valley fills. Contrarily to what is observed in the main Rhodanian basin, the molassic deposits are not restricted to transgressive systems tracts but may also correspond to forced regressive systems tracts. Four depositional sequences are identified, ranging from the Lower Burdigalian to the Langhian. They constitute a transgressive-regressive sequence set which might express the uplift of the area starting in the Late Burdigalian. This is consistent with the incision of the Middle Miocene deposits into the Lower Miocene ones as observed in other places of the main Rhodanian basin.

2016 ◽  
Vol 47 (1) ◽  
pp. 146 ◽  
Author(s):  
V. Karakitsios ◽  
M. Roveri ◽  
S. Lugli ◽  
V. Manzi ◽  
R. Gennari ◽  
...  

Detailed mapping of the Neogene deposits on Zakynthos Island shows that the Messinian primary evaporite basins, formed over Ionian basement, are delimited by the westernmost outcrop of the Triassic evaporitic diapirs, located west of the Kalamaki-Argasi Messinian gypsum unit. The post-Miocene external Ionian thrust is emplaced west of the Triassic diapirs. Planktonic foraminifera biostratigraphy indicates that primary evaporite accumulation took place probably during the first stage of the Messinian salinity crisis (5.96-5.60 Ma), in shallower parts of a foreland basin, formed over the Pre-Apulian and the Ionian zone basement. Establishment of these depositional environments, before the Ionian thrust emplacement, was probably due to the particularities of the foreland basin, which extended from the external Ionian to the internal Pre-Apulian zone. Field observations, borehole data and an onshore seismic profile show that the Neogene sediments over the Pre-Apulian  basement correspond to the foredeep through forebulge domain of the foreland basin, as it is documented from their spatial thickness distribution. In contrast, the Neogene sediments over the Ionian basement correspond to the wedge top of the foreland basin, which was less subsiding, as it is deduced by their reduced thickness. This lower subsidence rate was the result of the concurrent diapiric movements of the Ionian Triassic evaporites. In Agios Sostis area, located over Pre-Apulian basement, the Neogene sequence is intercalated by decametre-thick resedimented blocks consisting of shallow water selenite. To the southeast, this mass-wasting Messinian gypsum passes to mainly gypsum turbidite. In Kalamaki-Argasi area, located over Ionian basement, the shallow water environment led to the deposition of the observed primary gypsum. Erosion of the primary gypsum of both forebulge and wedge top supplied the foreland basin’s depocenter with gypsum turbidites.


GeoArabia ◽  
2008 ◽  
Vol 13 (3) ◽  
pp. 141-174
Author(s):  
Ali Ismail Al-Juboury ◽  
Tom McCann

ABSTRACT The Middle Miocene Fatha Formation (previously Lower Fars Formation) in northern Iraq was deposited in a broad and shallow foreland basin adjacent to the Zagros and Taurus Mountains. It forms a transgressive-regressive sequence comprising numerous shallowing-upward cycles of alternating mudrocks, limestones, gypsum and/or anhydrite and halite. These cycles reflect rapid changes in accommodation space in settings that ranged from open and restricted hypersaline marine to continental (sabkha and fluvio-deltaic). In the marginal parts of the basin, continental siliciclastics (red and variegated marls, silts and fine sandstones) represent either aeolian deposition or a combined lagoonal- and/or fluvial-dominated delta system. Eustasy, rather than tectonics, caused the high-frequency cyclicity seen in the Fatha Formation. We present twelve sections dominated by evaporites from the Sinjar and Fatha sub-basins to represent the main lithologic constituents of the formation. Our detailed analysis of the sedimentary succession focuses on the three main lithofacies (siliciclastics, carbonates and evaporites). Petrographic, geochemical and scanning electron microscope analysis of these units are presented. We identified a range of carbonate lithotypes: marly, arenaceous (detrital), organic-rich (fossiliferous), dolomitic limestone and dolomite. Dolomitic limestones occur mostly in the lower part of the lower member of the formation, which was deposited in a barred lagoonal environment with high salinity. The presence of peloidal lime-wackestone with bioclasts, particularly in the upper part of the lower member of the formation, may reflect quiet, shallow-water marine conditions with moderate depths and low energy. The bioclastic-peloidal grainstone-packstone microfacies, with a common and diverse fossil assemblage, may reflect high to moderate energy, shallow-water environments. Evaporites comprise the main sediments of the Fatha Formation. Nodular gypsum is the dominant gypsum type, although laminated, thick-bedded, and secondary gypsum (selenite and satin spar) also occur. In the subsurface, anhydrite and halite are the principal minerals.


Author(s):  
Xiao-Hua Zhu ◽  
Xiao-Hua Zhu ◽  
Ze-Nan Zhu ◽  
Ze-Nan Zhu ◽  
Xinyu Guo ◽  
...  

A coastal acoustic tomography (CAT) experiment for mapping the tidal currents in the Zhitouyang Bay was successfully carried out with seven acoustic stations during July 12 to 13, 2009. The horizontal distributions of tidal current in the tomography domain are calculated by the inverse analysis in which the travel time differences for sound traveling reciprocally are used as data. Spatial mean amplitude ratios M2 : M4 : M6 are 1.00 : 0.15 : 0.11. The shallow-water equations are used to analyze the generation mechanisms of M4 and M6. In the deep area, velocity amplitudes of M4 measured by CAT agree well with those of M4 predicted by the advection terms in the shallow water equations, indicating that M4 in the deep area where water depths are larger than 60 m is predominantly generated by the advection terms. M6 measured by CAT and M6 predicted by the nonlinear quadratic bottom friction terms agree well in the area where water depths are less than 20 m, indicating that friction mechanisms are predominant for generating M6 in the shallow area. Dynamic analysis of the residual currents using the tidally averaged momentum equation shows that spatial mean values of the horizontal pressure gradient due to residual sea level and of the advection of residual currents together contribute about 75% of the spatial mean values of the advection by the tidal currents, indicating that residual currents in this bay are induced mainly by the nonlinear effects of tidal currents.


2010 ◽  
Vol 223 (3-4) ◽  
pp. 235-264 ◽  
Author(s):  
Antonio Herrero ◽  
Gaspar Alonso-Gavilán ◽  
Juan Ramón Colmenero

Sign in / Sign up

Export Citation Format

Share Document