scholarly journals A Menon-type identity using Klee's function

2021 ◽  
pp. 1-12
Author(s):  
Arya Chandran ◽  
Neha Elizabeth Thomas ◽  
K. Vishnu Namboothiri
Keyword(s):  
2020 ◽  
Author(s):  
Weiguang Mao ◽  
Maziyar Baran Pouyan ◽  
Dennis Kostka ◽  
Maria Chikina

AbstractMotivationSingle cell RNA sequencing (scRNA-seq) enables transcriptional profiling at the level of individual cells. With the emergence of high-throughput platforms datasets comprising tens of thousands or more cells have become routine, and the technology is having an impact across a wide range of biomedical subject areas. However, scRNA-seq data are high-dimensional and affected by noise, so that scalable and robust computational techniques are needed for meaningful analysis, visualization and interpretation. Specifically, a range of matrix factorization techniques have been employed to aid scRNA-seq data analysis. In this context we note that sources contributing to biological variability between cells can be discrete (or multi-modal, for instance cell-types), or continuous (e.g. pathway activity). However, no current matrix factorization approach is set up to jointly infer such mixed sources of variability.ResultsTo address this shortcoming, we present a new probabilistic single-cell factor analysis model, Non-negative Independent Factor Analysis (NIFA), that combines features of complementary approaches like Independent Component Analysis (ICA), Principal Component Analysis (PCA), and Non-negative Matrix Factorization (NMF). NIFA simultaneously models uni- and multi-modal latent factors and can so isolate discrete cell-type identity and continuous pathway-level variations into separate components. Similar to NMF, NIFA constrains factor loadings to be non-negative in order to increase biological interpretability. We apply our approach to a range of data sets where cell-type identity is known, and we show that NIFA-derived factors outperform results from ICA, PCA and NMF in terms of cell-type identification and biological interpretability. Studying an immunotherapy dataset in detail, we show that NIFA identifies biomedically meaningful sources of variation, derive an improved expression signature for regulatory T-cells, and identify a novel myeloid cell subtype associated with treatment response. Overall, NIFA is a general approach advancing scRNA-seq analysis capabilities and it allows researchers to better take advantage of their data. NIFA is available at https://github.com/wgmao/[email protected]


2013 ◽  
Vol 15 (02) ◽  
pp. 1250054 ◽  
Author(s):  
DANIELE CASSANI ◽  
BERNHARD RUF ◽  
CRISTINA TARSI

We study the so-called limiting Sobolev cases for embeddings of the spaces [Formula: see text], where Ω ⊂ ℝn is a bounded domain. Differently from J. Moser, we consider optimal embeddings into Zygmund spaces: we derive related Euler–Lagrange equations, and show that Moser's concentrating sequences are the solutions of these equations and thus realize the best constants of the corresponding embedding inequalities. Furthermore, we exhibit a group invariance, and show that Moser's sequence is generated by this group invariance and that the solutions of the limiting equation are unique up to this invariance. Finally, we derive a Pohozaev-type identity, and use it to prove that equations related to perturbed optimal embeddings do not have solutions.


2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Xingjian Zhang ◽  
Duo Liu ◽  
Zining Yan ◽  
Guodong Zhao ◽  
Ye Yuan

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Dylan Kotliar ◽  
Adrian Veres ◽  
M Aurel Nagy ◽  
Shervin Tabrizi ◽  
Eran Hodis ◽  
...  

Identifying gene expression programs underlying both cell-type identity and cellular activities (e.g. life-cycle processes, responses to environmental cues) is crucial for understanding the organization of cells and tissues. Although single-cell RNA-Seq (scRNA-Seq) can quantify transcripts in individual cells, each cell’s expression profile may be a mixture of both types of programs, making them difficult to disentangle. Here, we benchmark and enhance the use of matrix factorization to solve this problem. We show with simulations that a method we call consensus non-negative matrix factorization (cNMF) accurately infers identity and activity programs, including their relative contributions in each cell. To illustrate the insights this approach enables, we apply it to published brain organoid and visual cortex scRNA-Seq datasets; cNMF refines cell types and identifies both expected (e.g. cell cycle and hypoxia) and novel activity programs, including programs that may underlie a neurosecretory phenotype and synaptogenesis.


Sign in / Sign up

Export Citation Format

Share Document