Sensitivity analysis accurately directs water-loss reduction interventions

2021 ◽  
Vol 5 (4) ◽  
pp. 1-15
Author(s):  
Edgar Johnson

Water supply and delivery inefficiencies increase the overall costs of water distribution networks, which is ultimately paid for by the customer through increased water prices or by society through cross-subsidisation. The benefits of correctly identifying and implementing efficiency improvement programs in water networks generally outweigh their costs. The paper illustrates how the interrelationship between components of the water balance influences the derivation of water-loss performance indicators and directs the selection of loss reduction interventions. Data anomalies in one part of the balance will affect other parts due to the balance maintaining its equilibrium.

Author(s):  
Peace Korshiwor Amoatey ◽  
Abena Agyeiwaa Obiri-Yeboah ◽  
Maxwell Akosah-Kusi

Abstract Methods for network leakage estimation include water balance, component analysis and minimum night flow (MNF) methods the latter of which involves subtracting the customer night use (QCNU) from night leakage and multiplying by the hour day factor (HDF). QCNU and HDF respectively depend on Active Night Population (ANP) and leakage exponent (N1). In most developing countries, these parameters are assumed in the MNF method thus introducing errors which makes setting realistic leakage reduction targets and key performance indicators (KPI) problematic. In this study, QCNU and HDF were evaluated by determining the relative error associated with ANP and N1 to establish localized rates for accurately estimating leakage in water networks. Between 7 and 11% relative error was associated with every 1% higher or lower ANP while up to 4% relative error was observed for every step considered. A linear relationship exists between the relative error associated with both and ANP although that of ANP is twice as high as This has technical implications on setting water loss reduction targets and investing in the water infrastructure. It is recommended that water utilities must establish localized ANP and values for accurate leakage estimation in water networks.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3446
Author(s):  
Martin Oberascher ◽  
Michael Möderl ◽  
Robert Sitzenfrei

Water losses in water distribution networks (WDNs) are unavoidable. Water losses are evaluated based on performance indicators (PIs) and used for future recommendations for network operators to take measures against water losses. However, these evaluations primarily focus on large and medium sized WDN and do not deal with the challenges of small WDNs (e.g., technical, and financial limitations, missing data). Therefore, an appropriate water loss management is a major challenge for operators in the federal state of Tyrol (Austria) due to the high number of small WDNs, e.g., low income in combination with long network lengths. In this regard, this work specifies and discusses state funding in Austria to support network operators to reduce water losses. To assess the impacts on management strategies, 40 WDNs, supplying 200 to 16,000 inhabitants, are investigated in detail. As the comparison of different PIs shows, a volume related PI (e.g., water loss volume divided by total water demand) is recommend as the decision criterion for local authorities due to minimal efforts and its easy calculation. Moreover, public funding helps to significantly reduce water losses in individual systems, but countermeasures should be different for small and larger WDNs. For example, leakage detection campaigns and rehabilitation planning based on pipe age should be established in future for larger WDNs in Tyrol. In contrast, an online flow metering system to monitor system inflows is suggested for small WDNs. Based on measurement data, leakages and burst can be detected and repaired swiftly.


2011 ◽  
Vol 19 (10) ◽  
pp. 1157-1167 ◽  
Author(s):  
Ramon Pérez ◽  
Vicenç Puig ◽  
Josep Pascual ◽  
Joseba Quevedo ◽  
Edson Landeros ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 73-80
Author(s):  
Anca Hoțupan ◽  
Roxana Mare ◽  
Adriana Hădărean

Abstract Water losses on the potable water distribution networks represent an important issue; on the one hand, water loss does not bring money and on the other hand, they modify water flow and pressure distribution on the entire system and this can lead to a cut-off of the water supply. A stringent monitoring of the water distribution network reduces considerably the water losses. The appearance of a leakage inside the distribution network is inevitable in time. But very important is its location and repair time – that are recommended to be as short as possible. The present paper analyses the hydraulic parameters of the water flow inside a supply pipe of a looped network that provides potable water for an entire neighbourhood. The main goals are to optimize these parameters, to reduce water losses by rigorous monitoring and control of the service pressure on the supply pipe and to create a balance between pressure and water flow. The presented method is valid for any type of distribution network, but the obtained values refer strictly to the analysed potable water distribution looped network.


2021 ◽  
Vol 11 (2) ◽  
pp. 143-150
Author(s):  
E. Vitan ◽  
Anca Hotupan ◽  
Adriana Hadarean

Abstract The performance evaluation of an implemented water distribution network is in tight relation with the choice of adequate measures for water loss reduction. Hence, the consequences of placing the water network in a wrong performance category are bad and will conduct to unreasonably costs or considerable water loss volumes. Therefore, the evaluation of the water network performance level based on both Non-Revenue Water (NRW) and Infrastructure Leakage Index (ILI) indicators is to be recommended. This paper deals with the performance evaluation of water distribution systems based on the calculated performance indicators NRW and ILI. For this purpose, collected data for a period of one year from 12 Romanian small water distribution systems and two simplified average pressure determination methods were used.


Sign in / Sign up

Export Citation Format

Share Document