scholarly journals Water Loss Management in Small Municipalities: The Situation in Tyrol

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3446
Author(s):  
Martin Oberascher ◽  
Michael Möderl ◽  
Robert Sitzenfrei

Water losses in water distribution networks (WDNs) are unavoidable. Water losses are evaluated based on performance indicators (PIs) and used for future recommendations for network operators to take measures against water losses. However, these evaluations primarily focus on large and medium sized WDN and do not deal with the challenges of small WDNs (e.g., technical, and financial limitations, missing data). Therefore, an appropriate water loss management is a major challenge for operators in the federal state of Tyrol (Austria) due to the high number of small WDNs, e.g., low income in combination with long network lengths. In this regard, this work specifies and discusses state funding in Austria to support network operators to reduce water losses. To assess the impacts on management strategies, 40 WDNs, supplying 200 to 16,000 inhabitants, are investigated in detail. As the comparison of different PIs shows, a volume related PI (e.g., water loss volume divided by total water demand) is recommend as the decision criterion for local authorities due to minimal efforts and its easy calculation. Moreover, public funding helps to significantly reduce water losses in individual systems, but countermeasures should be different for small and larger WDNs. For example, leakage detection campaigns and rehabilitation planning based on pipe age should be established in future for larger WDNs in Tyrol. In contrast, an online flow metering system to monitor system inflows is suggested for small WDNs. Based on measurement data, leakages and burst can be detected and repaired swiftly.

2019 ◽  
Vol 9 (1) ◽  
pp. 73-80
Author(s):  
Anca Hoțupan ◽  
Roxana Mare ◽  
Adriana Hădărean

Abstract Water losses on the potable water distribution networks represent an important issue; on the one hand, water loss does not bring money and on the other hand, they modify water flow and pressure distribution on the entire system and this can lead to a cut-off of the water supply. A stringent monitoring of the water distribution network reduces considerably the water losses. The appearance of a leakage inside the distribution network is inevitable in time. But very important is its location and repair time – that are recommended to be as short as possible. The present paper analyses the hydraulic parameters of the water flow inside a supply pipe of a looped network that provides potable water for an entire neighbourhood. The main goals are to optimize these parameters, to reduce water losses by rigorous monitoring and control of the service pressure on the supply pipe and to create a balance between pressure and water flow. The presented method is valid for any type of distribution network, but the obtained values refer strictly to the analysed potable water distribution looped network.


2021 ◽  
Vol 6 (1) ◽  
pp. 88-103
Author(s):  
Erizaldy Azwar ◽  
Diki Surya Irawan ◽  
Muhammad Naufal

Water distribution networks that are unoptimally operated can cause various problems so that water flows are not evenly distributed to consumers. One of the causes is the high water loss level due to leaks in the distribution pipeline system, as one of the water operators in Jakarta, Indonesia, PT. XYZ has tremendous efforts to improve the water supply system. One of them is to reduce physical water losses. The estimated percentage of physical water losses of water distribution networks in Green Garden District, West Jakarta, in April 2018 has amounted to 30%. It is still above the tolerance standard for the national water loss rate in Indonesia's Water Utilities, around 20%. It is necessary to reduce water loss to overcome this problem. After performing a step test program in the Green Garden District, it was found that there was a water loss of 84 lps in July 2018, which increased to 103.16 l/sin in May 2019 or showed an increase of 23%. Then, a pressure calibration was undertaken by placing six pressure monitoring points on the district in May 2019 using hydraulic simulation from WaterGEMS V.10. This calibration obtained the highest pressure Gap at pressure monitoring point #5 of 2.5 mH2O and the lowest pressure monitoring point #1 of 1.03 mH2O. Subsequently, leak detection measures were conducted to reduce physical water loss from January to May 2019,  PT. XYZ water distribution network uses two leak detection methods, visible and invisible leak detections, which had successfully reduced its net night flows (NNFs). The leak repairs obtained 77 leak points, which consisted of 32 visible leaks and 45 invisible leaks. Total estimated leakage flows of 5.33 lps were obtained from the decrease in the net night flow, which indicates a decrease in physical water loss by 16% from January to March 2019.


2008 ◽  
Vol 8 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Tim Waldron

The application of International Water Association guidelines to control water losses provides a foundation for new methods and psychologies for controlling Water Distribution Systems. Best management techniques utilizing International Water Association water loss control methodologies compared to totally open distribution networks can now be supported for analysis scenarios using both network analysis and genetic algorithms.


10.29007/gvnz ◽  
2018 ◽  
Author(s):  
Armando Di Nardo ◽  
Michele Di Natale ◽  
Anna Di Mauro ◽  
Eva Martínez Díaz ◽  
Jose Antonio Blázquez Garcia ◽  
...  

The recent development and applications of social network theory in many fields of engineering (electricity, gas, transport, water, etc.) allows both the understanding of networks and to improve their management. Social network theory coupled to the availability of real time data and big data analysis techniques can change drastically the traditional approaches to manage civil networks. Recently, some authors are working to apply this novel approach, based on social network theory, on the water distribution networks using: a) graph partitioning algorithms to define optimal district meter areas both for water losses identification and for water network protection, b) innovative topological, energy and hydraulic indices to analyze performance; and c) GIS (Geographical Information System) to provide a more effective display of results and to improve network behavior in specific operational conditions. In this paper, a novel release 3.5 of SWANP software, that implements all these features, was tested on a real large water network in Alcalá de Henares, Spain.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 231
Author(s):  
Seo Hyung Choi ◽  
Bongwoo Shin ◽  
Eunher Shin

When water utilities establish water loss control programs, they traditionally focus on apparent loss rather than real loss when considering economic feasibility in the water sector. There is an urgent need for new management approaches that can address complex relationships and ensure the sustainability of natural resources among different sectors. This study suggests a novel approach for water utilities to manage water losses from the water-energy (WE) Nexus perspective. The Nexus model uses system dynamics to simulate twelve scenarios with the differing status of water loss and energy intensities. This analysis identifies real loss as one of the main causes of resource waste and an essential factor from the Nexus perspective. It also demonstrates that the energy intensity of each process in the urban water system has a significant impact on resource use and transfer. The consumption and movement of resources can be quantified in each process involved in the urban water system to distinguish central and vulnerable processes. This study suggests that the Nexus approach can strongly contribute to quantifying the use and movement of resources between water and energy sectors and the strategic formulation of sustainable and systematic water loss management strategies from the Nexus perspective.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1236
Author(s):  
Muhammad Riaz ◽  
Ayesha Razzaq ◽  
Humaira Kalsoom ◽  
Dragan Pamučar ◽  
Hafiz Muhammad Athar Farid ◽  
...  

The notions of fuzzy set (FS) and intuitionistic fuzzy set (IFS) make a major contribution to dealing with practical situations in an indeterminate and imprecise framework, but there are some limitations. Pythagorean fuzzy set (PFS) is an extended form of the IFS, in which degree of truthness and degree of falsity meet the condition 0≤Θ˘2(x)+K2(x)≤1. Another extension of PFS is a q´-rung orthopair fuzzy set (q´-ROFS), in which truthness degree and falsity degree meet the condition 0≤Θ˘q´(x)+Kq´(x)≤1,(q´≥1), so they can characterize the scope of imprecise information in more comprehensive way. q´-ROFS theory is superior to FS, IFS, and PFS theory with distinguished characteristics. This study develops a few aggregation operators (AOs) for the fusion of q´-ROF information and introduces a new approach to decision-making based on the proposed operators. In the framework of this investigation, the idea of a generalized parameter is integrated into the q´-ROFS theory and different generalized q´-ROF geometric aggregation operators are presented. Subsequently, the AOs are extended to a “group-based generalized parameter”, with the perception of different specialists/decision makers. We developed q´-ROF geometric aggregation operator under generalized parameter and q´-ROF geometric aggregation operator under group-based generalized parameter. Increased water requirements, in parallel with water scarcity, force water utilities in developing countries to follow complex operating techniques for the distribution of the available amounts of water. Reducing water losses from water supply systems can help to bridge the gap between supply and demand. Finally, a decision-making approach based on the proposed operator is being built to solve the problems under the q´-ROF environment. An illustrative example related to water loss management has been given to show the validity of the developed method. Comparison analysis between the proposed and the existing operators have been performed in term of counter-intuitive cases for showing the liability and dominance of proposed techniques to the existing one is also considered.


Water Policy ◽  
2017 ◽  
Vol 19 (6) ◽  
pp. 1030-1048 ◽  
Author(s):  
Kartiki S. Naik ◽  
Madelyn Glickfeld

Abstract Improving water management in California requires a transition from imported to local water resources used efficiently. To assess this transitional capacity of water retailers in metropolitan Los Angeles County, we focused on a key water management metric: the water distribution efficiency. We traced the evolution of water loss reduction policy and practices globally with emphasis on California. California Senate Bills 1420 and 555 mandate annual water auditing and reporting for urban water suppliers. We surveyed and evaluated ten water retailers' approaches to monitor and reduce losses. Four of ten sampled water retailers monitored real losses, averaging 3–4% of total water supplied. Only three of ten sampled water retailers employed leak detection technology. Of the six sampled retailers with annual pipe replacement strategies, four retailers followed inadequate rehabilitation schedules. Most of the sampled retailers monitor water losses in percent, which misrepresents the actual volume. While a necessary step, California water loss legislation relies on the American Water Works Association Water Audit software. Verifying reported data for randomly selected retailers can ensure high data quality. Small retailers are exempt from mandatory water loss monitoring, and they need state support and resource pooling to improve their water distribution efficiency.


Sign in / Sign up

Export Citation Format

Share Document