scholarly journals Effect of the Excitation Source on the Quantum-Yield Measurements of Rhodamine B Laser Dye Studied Using Thermal-Lens Technique.

2001 ◽  
Vol 17 (1) ◽  
pp. 141-144 ◽  
Author(s):  
C. V. BINDHU ◽  
S. S. HARILAL
1996 ◽  
Vol 10 (22) ◽  
pp. 1103-1110 ◽  
Author(s):  
C.V. BINDHU ◽  
S.S. HARILAL ◽  
RIJU C. ISSAC ◽  
V.P.N. NAMPOORI ◽  
C.P.G. VALLABHAN

Pulsed photoacoustic technique which is found to be a very convenient and accurate method, is used for the determination of absolute fluorescence quantum yield of laser dye rhodamine B. Concentration and power dependence of quantum yield of rhodamine B in methanol for excitation at 532 nm is reported here. Results show that a rapid decrease in quantum yield as the concentration is increased and finally it reaches the limit corresponding to fluorescence quenching.


1996 ◽  
Vol 29 (4) ◽  
pp. 1074-1079 ◽  
Author(s):  
C V Bindhu ◽  
S S Harilal ◽  
Geetha K Varier ◽  
Riju C Issac ◽  
V P N Nampoori ◽  
...  

2019 ◽  
Vol 3 (11) ◽  
Author(s):  
J. F. M. dos Santos ◽  
V. S. Zanuto ◽  
M. Ventura ◽  
C. B. Bramorski ◽  
T. Catunda ◽  
...  

2019 ◽  
Vol 26 (10) ◽  
pp. 758-767
Author(s):  
Vicente Rubio ◽  
Vijaya Iragavarapu ◽  
Maciej J. Stawikowski

Background: Herein we report the multigram-scale synthesis, characterization and application of a rhodamine B-based fluorophore (ROSA) suitable for fluorescent studies in biological applications. This fluorophore is devoid of rhodamine spirolactone formation and furthermore characterized by a high molar extinction coefficient (ϵ=87250 ± 1630 M-1cm-1) and quantum yield (φ) of 0.589 ± 0.070 in water. Reported here is also the application of ROSA towards synthesis of a ROSA-PEG-GRGDS-NH2 fluorescent probe suitable for live cell imaging of αvβ3 integrins for in vitro assays. Objective: The main objective of this study is to efficiently prepare rhodamine B derivative, devoid of spirolactone formation that would be suitable for bioconjugation and subsequent bioimaging. Methods: Rhodamine B was transformed into rhodamine B succinimide ester (RhoB-OSu) using N-hydroxysuccinimide. RhoB-OSu was further coupled to sarcosine to obtain rhodamine Bsarcosine dye (ROSA) in good yield. The ROSA dye was then coupled to a αvβ3 integrin binding sequence using standard solid-phase conditions. Resulting ROSA-PEG-GRGDS-NH2 probe was used to image integrins on cancer cells. Results: The rhodamine B-sarcosine dye (ROSA) was obtained in multigram scale in good total yield of 47%. Unlike rhodamine B, the ROSA dye does not undergo pH-dependent spirolactone/spirolactam formation as compared with rhodamine B-glycine. It is also characterized by excellent quantum yield (φ) of 0.589 ± 0.070 in water and high molar extinction coefficient of 87250 ± 1630 M-1cm-1. ROSA coupling to the RGD-like peptide was proved to be efficient and straightforward. Imaging using standard filters on multimode plate reader and confocal microscope was performed. The αvβ3 integrins present on the surface of live WM-266-4 (melanoma) and MCF- 7 (breast cancer) cells were successfully imaged. Conclusion: We successfully derivatized rhodamine B to create an inexpensive, stable and convenient to use fluorescent probe. The obtained derivative has excellent photochemical properties and it is suitable for bioconjugation and many imaging applications.


2021 ◽  
Author(s):  
Wissal Jilani ◽  
Abdelfatteh Bouzidi ◽  
Albandary Almahri ◽  
Hajer Guermazi ◽  
Ibrahim Yahia

Abstract Various thickness of Rhodamine B (RhB) laser dye was deposited on epoxy polymeric as a new dielectric organic substrate by spin coating method for the first time. This study focused on the newly considered RhB dye on an epoxy substrate for wide-scale applications. The thickness effect on structural, optical, and dielectric properties of the hybrid coating films was performed. The XRD patterns of the films indicated a large hump amorphous design and lack of Bragg peak intensity associated with the RhB laser dye, due to amorphous film concentration. From UV-Visible spectroscopy, the optical absorption edge shifts to the higher wavelengths direction (redshift) with the variation in RhB dye thicknesses. It was found that the energy band gap decreased when the RhB dye film thickness changed. The refractive index is an important parameter influencing the optical component design. Their values vary according to each relationship that extremely useful the films in optical devices. Laser power attenuation sensitivity of pure epoxy polymeric substrate and its coating films shows that under reducing the thicknesses of RhB dye, the laser power intensity effect increases. Several dielectric parameters are extracted from the series and parallel capacitance measurements. The present results offer new material films for luminescent energy solar concentrator applications.


Sign in / Sign up

Export Citation Format

Share Document