polymeric substrate
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Wissal Jilani ◽  
Abdelfatteh Bouzidi ◽  
Albandary Almahri ◽  
Hajer Guermazi ◽  
Ibrahim Yahia

Abstract Various thickness of Rhodamine B (RhB) laser dye was deposited on epoxy polymeric as a new dielectric organic substrate by spin coating method for the first time. This study focused on the newly considered RhB dye on an epoxy substrate for wide-scale applications. The thickness effect on structural, optical, and dielectric properties of the hybrid coating films was performed. The XRD patterns of the films indicated a large hump amorphous design and lack of Bragg peak intensity associated with the RhB laser dye, due to amorphous film concentration. From UV-Visible spectroscopy, the optical absorption edge shifts to the higher wavelengths direction (redshift) with the variation in RhB dye thicknesses. It was found that the energy band gap decreased when the RhB dye film thickness changed. The refractive index is an important parameter influencing the optical component design. Their values vary according to each relationship that extremely useful the films in optical devices. Laser power attenuation sensitivity of pure epoxy polymeric substrate and its coating films shows that under reducing the thicknesses of RhB dye, the laser power intensity effect increases. Several dielectric parameters are extracted from the series and parallel capacitance measurements. The present results offer new material films for luminescent energy solar concentrator applications.


2021 ◽  
Author(s):  
Mourad Elsobky ◽  
Joachim N. Burghartz

Hybrid Systems-in-Foil (HySiF) is a concept that extends the potential of conventional More-than-More Systems-in/on-Package (SiPs and SoPs) to the flexible electronics world. In HySiF, an economical implementation of flexible electronic systems is possible by integrating a minimum number of embedded silicon chips and a maximum number of on-foil components. Here, the complementary characteristics of CMOS SoCs and larger area organic and printed electronics are combined in a HySiF-compatible polymeric substrate. Within the HySiF scope, the fabrication process steps and the integration design rules with all the accompanying boundary conditions concerning material compatibility, surface properties, and thermal budget, are defined. This Element serves as an introduction to the HySiF concept. A summary of recent ultra-thin chip fabrication and flexible packaging techniques is provided. Several bendable electronic components are presented demonstrating the benefits of HySiF. Finally, prototypes of flexible wireless sensor systems that adopt the HySiF concept are demonstrated.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 698
Author(s):  
Pin-Chuan Chen ◽  
Ya-Ting Lin ◽  
Chi-Minh Truong ◽  
Pai-Shan Chen ◽  
Huihua-Kenny Chiang

This study aimed to develop an automated optical inspection (AOI) system that can rapidly and precisely measure the dimensions of microchannels embedded inside a transparent polymeric substrate, and can eventually be used on the production line of a factory. The AOI system is constructed based on Snell’s law. The concept holds that, when light travels through two transparent media (air and the microfluidic chip transparent material), by capturing the parallel refracted light from a light source that went through the microchannel using a camera with a telecentric lens, the image can be analyzed using formulas derived from Snell’s law to measure the dimensions of the microchannel cross-section. Through the NI LabVIEW 2018 SP1 programming interface, we programmed this system to automatically analyze the captured image and acquire all the needed data. The system then processes these data using custom-developed formulas to calculate the height and width measurements of the microchannel cross-sections and presents the results on the human–machine interface (HMI). In this study, a single and straight microchannel with a cross-sectional area of 300 μm × 300 μm and length of 44 mm was micromachined and sealed with another polymeric substrate by a solvent bonding method for experimentations. With this system, 45 cross-sectional areas along the straight microchannel were measured within 20 s, and experiment results showed that the average measured error was less than 2%.


Author(s):  
Eunji Choi ◽  
Sung Jun Hong ◽  
Junhe Chen ◽  
Yeong Jae Kim ◽  
Yunkyu Choi ◽  
...  

A CO2-selective ZIF-type membrane was fabricated by growing a ZIF-8 layer on a graphene oxide nanoribbon (GONR)-coated polymeric substrate. Owing to the strong anchoring effect of GONR to the ZIF-8...


2021 ◽  
Vol 158 ◽  
pp. 104792
Author(s):  
Kambiz Sadeghi ◽  
Hyung-Woo Jee ◽  
Ki-Jung Paeng ◽  
Jongchul Seo

Author(s):  
Wei Sun ◽  
Jingrui Liu ◽  
Qing Hao ◽  
Kunyan Lu ◽  
Zhaoqiang Wu ◽  
...  

The simultaneous introduction of two new functionalities into the same polymeric substrate under mild reaction conditions is an interesting and important topic. Herein, dual-functional polydimethylsiloxane (PDMS) surfaces with antibacterial and...


Sign in / Sign up

Export Citation Format

Share Document