scholarly journals COMPARING THE EFFECT OF TOTAL SOLIDS CONCENTRATION ON BIO-HYDROGEN PRODUCTION POTENTIAL OF FOOD WASTE AND ITS DERIVATIVES UNDER MESOPHILIC THERMOPHILIC CONDITIONS

2016 ◽  
Vol 53 (09) ◽  
pp. 687-694
Author(s):  
Chaudhry Arslan ◽  
Asma Sattar ◽  
Ji Changying ◽  
Abdul Nasir ◽  
Irshad Ali Mari ◽  
...  
2012 ◽  
Vol 37 (18) ◽  
pp. 13288-13295 ◽  
Author(s):  
Carlos Ramos ◽  
Germán Buitrón ◽  
Iván Moreno-Andrade ◽  
Rolando Chamy

2008 ◽  
Vol 57 (7) ◽  
pp. 1031-1036 ◽  
Author(s):  
H. B. Ding ◽  
X. Y. Liu ◽  
O. Stabnikova ◽  
J.-Y. Wang

This study demonstrated the influence of protein on biohydrogen production from carbohydrates, especially starch, by using different combinations of two model food wastes, rice as starch-rich and soybean residue as protein-rich food waste. It was found the maximum specific hydrogen production potential, 0.99 mol H2/mol initial starch as glucose, and the maximum specific hydrogen production rate, 530 ml H2/h g-VS, occurred at a starch/protein ratio of 1.7. The protein content in the initial food waste not only provided buffering capacity to neutralize the volatile fatty acids as concurrent products but also enhanced the hydrogen production by providing readily available organic nitrogen such as soluble proteins and amino acids to microorganisms.


2020 ◽  
Vol 181 ◽  
pp. 01005
Author(s):  
Makhura Emmanuel Pax ◽  
Edison Muzenda ◽  
Tumeletso Lekgoba

This paper aims at finding the effect of co-digestion of cow dung and food waste on total biogas yield. Biogas production was improved through co-digestion of cow dung and food waste (FW) containing a small fraction of inoculum under mesophilic temperature (37ºC) over a retention time of 24 days. Co-digestion ratios of 1:1, 2:1 and 3:1 for cowdung/foodwaste were used for the study on anaerobic digestion on the co digested matter. Tests were carried out starting with the preparation of substrates, substrate characterization to determine the moisture content (MC), total solids (TS), volatile solids (VS) and ultimately batch anaerobic digestion experiments under thermophilic conditions (370C). The moisture content, volatile solids and total solids for food waste were 78, 22 and 90.7% respectively while the characteristics for cow dung were 67.2, 32.8 and 96.0 % respectively. From the study, a mixing ratio of cow dung: food waste of 1:2 was found to be the optimum substrate mixture for biogas production at 25595.7 Nml. The accumulated gas volumes of 18756.6, 14042.5, 13940.8 and 13839.1 Nml were recorded for cow dung: food waste ratios of 2:1, 1:1, 1:3 and 3:1 respectively. For a co-digestion containing more of the food waste than cow dung, a higher volume of biogas is produce.


2020 ◽  
Vol 45 (29) ◽  
pp. 14744-14755 ◽  
Author(s):  
Wei Su ◽  
Changqing Cai ◽  
Ping Liu ◽  
Wei Lin ◽  
Baorui Liang ◽  
...  

2008 ◽  
Author(s):  
S. Shimizu ◽  
A. Fujisawa ◽  
O. Mizuno ◽  
T. Kameda ◽  
T. Yoshioka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document