Fatty Acid Production
Recently Published Documents





2021 ◽  
Min-jin Kwak ◽  
Sun-Woo Choi ◽  
Yong-Soon Choi ◽  
Hanbae Lee ◽  
Kwang-Youn Whang

Abstract Background In animals, weaning stress is the first and most critical stress. Weaning can negatively affect the growth performance of animals physically, psychologically, and pathologically. Our previous studies on the HT-29 cell line and early-weaned rats demonstrated that adequate sophorolipid (SPL) supplementation in feed could enhance the mucin-producing and wound healing capacities of the gut defense system by modulating gut microbiota. Results Dietary SPL supplementation at 5 and 10 mg/kg quadratically increased the average daily gain during the experimental period in the treatment groups when compared with the control group. The albumin levels of piglets fed with the SPL supplemented diet were downregulated to the normal range. Moreover, in feed, SPL supplementation at 5 and 10 mg/kg improved jejunal histological indices and gene expression levels related to mucin secretion and local inflammation markers. Consistent with these results, adequate SPL supplementation (5 and 10 mg/kg) increased the population of Lactobacillus, a beneficial bacteria, and its short-chain fatty acid production in the ceca of piglets. Conclusions The occurrence of diarrhea after weaning in piglets could be reduced by feeding an SPL-supplemented diet which improves the gut defense system by increasing the microbial population and enhancing mucin layer integrity.

2021 ◽  
Jun Yin ◽  
Xiaozheng He ◽  
Ting Chen

Abstract For treatment of saline wastewater, the feasible approach to mitigate the salt inhibition is using the acclimated salt-tolerant sludge. The aim of this work was to verify if the use of the acclimated sludge (AS) also could alleviate salinity stress on acidogenic fermentation of food waste (FW) under saline environment. The responses of volatile fatty acid (VFA) production and the microbial community to salt stress were investigated. Results showed that VFA production was reduced by high salinity (30 g/L and 70 g/L NaCl) compared with the control (0 g/L NaCl), especially for groups inoculated with the AS, whereas inoculating with the non-acclimated sludge (non-AS) caused less reduction. The impact of salinity was seen on VFA production with accumulation of more propionic acid and acetic acid along with traces of butyric acid. Significant shift on microbial community composition occurred upon biomass exposure to salt. The microbial communities of the non-AS and AS groups at the same NaCl concentrations converged over time. The non-AS groups contained a more proportion of the phyla Bacteroidetes, Atribacteria and Chloroflexi at high salt levels. These findings demonstrate that the non-AS was more conducive to VFA production due to the presence of higher proportions of hydrolytic and fermenting bacteria.Statement of NoveltyAlthough anaerobic digestion (AD) would be the most cost‐effective and sustainable technology, the salinity is considered to be inhibitory to anaerobic biological treatment processes. The recent applications of salt‐tolerant cultures for the treatment of saline wastewaters suggest that biological treatment is promising. Previous studies also reported that acidogenic fermentation as the first step of AD process is inhibited under saline conditions. However, no study to date has focused on acidogenic fermentation for volatile fatty acid production from food waste using salt-tolerant sludge. Therefore, there is a need for improved understanding of high salt stress to resource recovery from organic wastes. This understanding can help in the design of an operating strategy to alleviate the inhibition of waste treatment by salinity.

2021 ◽  
Vol 13 (17) ◽  
pp. 9606
Van Hong Thi Pham ◽  
Jeongyoon Ahn ◽  
Jaisoo Kim ◽  
Sangbeom Lee ◽  
Ingyu Lee ◽  

The production of volatile fatty acids (VFAs) from waste stream has been recently getting attention as a cost-effective and environmentally friendly approach in mechanical–biological treatment plants. This is the first study to explore the use of a functional bacterium, AM5 isolated from forest soil, which is capable of enhancing the production of VFAs in the presence of soil bacteria as a co-digester in non-strict anaerobic fermentation processes of food waste leachates. Batch laboratory-scale trials were conducted under thermophilic conditions at 55 °C and different pH values ranging from approximately 5 to 11, as well as under uncontrolled pH for 15 days. Total solid content (TS) and volatile solid content (VS) were observed with 58.42% and 65.17% removal, respectively. An effluent with a VFA concentration of up to 33,849 mg/L (2365.57 mg/g VS; 2244.45 mg/g chemical oxygen demand (COD)-VFA VS; 1249 mg/g VSremoved) was obtained at pH 10.5 on the second day of the batch culture. The pH resulted in a significant effect on VFA concentration and composition at various values. Additionally, all types of VFAs were produced under pH no-adjustment (approximately 5) and at pH 10.5. This research might lead to interesting questions and ideas for further studies on the complex metabolic pathways of microbial communities in the mixture of a soil solution and food waste leachate.

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2924
Arianna Romero Marcia ◽  
Tianming Yao ◽  
Ming-Hsu Chen ◽  
Renee Oles ◽  
Stephen Lindemann

Increased dietary fiber consumption has been shown to increase human gut microbial diversity, but the mechanisms driving this effect remain unclear. One possible explanation is that microbes are able to divide metabolic labor in consumption of complex carbohydrates, which are composed of diverse glycosidic linkages that require specific cognate enzymes for degradation. However, as naturally derived fibers vary in both sugar composition and linkage structure, it is challenging to separate out the impact of each of these variables. We hypothesized that fine differences in carbohydrate linkage structure would govern microbial community structure and function independently of variation in glycosyl residue composition. To test this hypothesis, we fermented commercially available soluble resistant glucans, which are uniformly composed of glucose linked in different structural arrangements, in vitro with fecal inocula from each of three individuals. We measured metabolic outputs (pH, gas, and short-chain fatty acid production) and community structure via 16S rRNA amplicon sequencing. We determined that community metabolic outputs from identical glucans were highly individual, emerging from divergent initial microbiome structures. However, specific operational taxonomic units (OTUs) responded similarly in growth responses across individuals’ microbiota, though in context-dependent ways; these data suggested that certain taxa were more efficient in competing for some structures than others. Together, these data support the hypothesis that variation in linkage structure, independent of sugar composition, governs compositional and functional responses of microbiota.

Sign in / Sign up

Export Citation Format

Share Document