scholarly journals GENE DUPLICATION ASSESSMENT AND SEQUENCE ANALYSIS OF CHALCONE SYNTHASE GENE IN PLANTS

2016 ◽  
Vol 53 (04) ◽  
pp. 827-831
Author(s):  
Ali Askar Nouhi
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katie Emelianova ◽  
Andrea Martínez Martínez ◽  
Lucia Campos-Dominguez ◽  
Catherine Kidner

AbstractBegonia is an important horticultural plant group, as well as one of the most speciose Angiosperm genera, with over 2000 described species. Genus wide studies of genome size have shown that Begonia has a highly variable genome size, and analysis of paralog pairs has previously suggested that Begonia underwent a whole genome duplication. We address the contribution of gene duplication to the generation of diversity in Begonia using a multi-tissue RNA-seq approach. We chose to focus on chalcone synthase (CHS), a gene family having been shown to be involved in biotic and abiotic stress responses in other plant species, in particular its importance in maximising the use of variable light levels in tropical plants. We used RNA-seq to sample six tissues across two closely related but ecologically and morphologically divergent species, Begonia conchifolia and B. plebeja, yielding 17,012 and 19,969 annotated unigenes respectively. We identified the chalcone synthase gene family members in our Begonia study species, as well as in Hillebrandia sandwicensis, the monotypic sister genus to Begonia, Cucumis sativus, Arabidopsis thaliana, and Zea mays. Phylogenetic analysis suggested the CHS gene family has high duplicate turnover, all members of CHS identified in Begonia arising recently, after the divergence of Begonia and Cucumis. Expression profiles were similar within orthologous pairs, but we saw high inter-ortholog expression variation. Sequence analysis showed relaxed selective constraints on some ortholog pairs, with substitutions at conserved sites. Evidence of pseudogenisation and species specific duplication indicate that lineage specific differences are already beginning to accumulate since the divergence of our study species. We conclude that there is evidence for a role of gene duplication in generating diversity through sequence and expression divergence in Begonia.


2017 ◽  
pp. 299-304
Author(s):  
S. Chanapan ◽  
B. Tontiworachai ◽  
R. Deewatthanawong ◽  
A. Suwanagul

2021 ◽  
Author(s):  
Katie Emelianova ◽  
Andrea Martínez Martínez ◽  
Lucia Campos-Dominguez ◽  
Catherine Kidner

Abstract Begonia is an important horticultural plant, as well as one of the most speciose Angiosperm genera, with over 2000 described species. Genus wide studies of genome size have shown that Begonia has a highly variable genome size, and analysis of paralog pairs has previously suggested that Begonia underwent a whole genome duplication. We address the contribution of gene duplication to the generation of diversity in Begonia using a multi-tissue RNA-seq approach. We chose to focus on the chalcone synthase (CHS) gene family due to its role in biotic and abiotic stress response, and in particular its importance in maximising the use of variable light levels in tropical plants. We used RNA-seq to sample six tissues across two closely related but ecologically and morphologically divergent species, Begonia conchifolia and B. plebeja, yielding 17,012 and 19,969 annotated unigenes respectively. We identified the chalcone synthase gene family members in our Begonia study species, as well as in Hillebrandia sandwicensis, the monotypic sister genus to Begonia, Cucumis sativus, Arabidopsis thaliana, and Zea mays. Phylogenetic and expression analysis revealed the recent origin of CHS duplicates in Begonia, which showed both conserved and divergent expression profiles between duplicates. We conclude that there is evidence for a role of gene duplication in generating diversity through expression divergence in Begonia.


2005 ◽  
Vol 130 (3) ◽  
pp. 360-365 ◽  
Author(s):  
R.J. Griesbach ◽  
R.M. Beck

The sequence of the intron within the chalcone synthase A gene (ChsA) was used to characterize Petunia integrifolia subsp. integrifolia var. depauperata (Fries) Smith et Downs, P. altiplana Ando et Hashimoto, P. littoralis Smith et Downs, and an unknown taxon from the town of Torres in Brazil. Based upon the intron, the Torres taxon most closely resembled P. integrifolia. The unrooted phylogenetic tree suggested that P. integrifolia was more closely related to P. littoralis than P. altiplana.


2015 ◽  
Vol 50 (1) ◽  
pp. 55
Author(s):  
Bao Ying ◽  
Guo Changfeng ◽  
Chen Shaohua ◽  
Liu Mei

2001 ◽  
Vol 151 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Gareth I. Jenkins ◽  
Joanne C. Long ◽  
Helena K. Wade ◽  
Matthew R. Shenton ◽  
Tatiana N. Bibikova

Sign in / Sign up

Export Citation Format

Share Document