scholarly journals Multi-tissue transcriptome analysis of two Begonia species reveals dynamic patterns of evolution in the chalcone synthase gene family

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katie Emelianova ◽  
Andrea Martínez Martínez ◽  
Lucia Campos-Dominguez ◽  
Catherine Kidner

AbstractBegonia is an important horticultural plant group, as well as one of the most speciose Angiosperm genera, with over 2000 described species. Genus wide studies of genome size have shown that Begonia has a highly variable genome size, and analysis of paralog pairs has previously suggested that Begonia underwent a whole genome duplication. We address the contribution of gene duplication to the generation of diversity in Begonia using a multi-tissue RNA-seq approach. We chose to focus on chalcone synthase (CHS), a gene family having been shown to be involved in biotic and abiotic stress responses in other plant species, in particular its importance in maximising the use of variable light levels in tropical plants. We used RNA-seq to sample six tissues across two closely related but ecologically and morphologically divergent species, Begonia conchifolia and B. plebeja, yielding 17,012 and 19,969 annotated unigenes respectively. We identified the chalcone synthase gene family members in our Begonia study species, as well as in Hillebrandia sandwicensis, the monotypic sister genus to Begonia, Cucumis sativus, Arabidopsis thaliana, and Zea mays. Phylogenetic analysis suggested the CHS gene family has high duplicate turnover, all members of CHS identified in Begonia arising recently, after the divergence of Begonia and Cucumis. Expression profiles were similar within orthologous pairs, but we saw high inter-ortholog expression variation. Sequence analysis showed relaxed selective constraints on some ortholog pairs, with substitutions at conserved sites. Evidence of pseudogenisation and species specific duplication indicate that lineage specific differences are already beginning to accumulate since the divergence of our study species. We conclude that there is evidence for a role of gene duplication in generating diversity through sequence and expression divergence in Begonia.

2021 ◽  
Author(s):  
Katie Emelianova ◽  
Andrea Martínez Martínez ◽  
Lucia Campos-Dominguez ◽  
Catherine Kidner

Abstract Begonia is an important horticultural plant, as well as one of the most speciose Angiosperm genera, with over 2000 described species. Genus wide studies of genome size have shown that Begonia has a highly variable genome size, and analysis of paralog pairs has previously suggested that Begonia underwent a whole genome duplication. We address the contribution of gene duplication to the generation of diversity in Begonia using a multi-tissue RNA-seq approach. We chose to focus on the chalcone synthase (CHS) gene family due to its role in biotic and abiotic stress response, and in particular its importance in maximising the use of variable light levels in tropical plants. We used RNA-seq to sample six tissues across two closely related but ecologically and morphologically divergent species, Begonia conchifolia and B. plebeja, yielding 17,012 and 19,969 annotated unigenes respectively. We identified the chalcone synthase gene family members in our Begonia study species, as well as in Hillebrandia sandwicensis, the monotypic sister genus to Begonia, Cucumis sativus, Arabidopsis thaliana, and Zea mays. Phylogenetic and expression analysis revealed the recent origin of CHS duplicates in Begonia, which showed both conserved and divergent expression profiles between duplicates. We conclude that there is evidence for a role of gene duplication in generating diversity through expression divergence in Begonia.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhiwei Chen ◽  
Longhua Zhou ◽  
Panpan Jiang ◽  
Ruiju Lu ◽  
Nigel G. Halford ◽  
...  

Abstract Background Sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs) play important roles in regulating metabolism and stress responses in plants, providing a conduit for crosstalk between metabolic and stress signalling, in some cases involving the stress hormone, abscisic acid (ABA). The burgeoning and divergence of the plant gene family has led to the evolution of three subfamilies, SnRK1, SnRK2 and SnRK3, of which SnRK2 and SnRK3 are unique to plants. Therefore, the study of SnRKs in crops may lead to the development of strategies for breeding crop varieties that are more resilient under stress conditions. In the present study, we describe the SnRK gene family of barley (Hordeum vulgare), the widespread cultivation of which can be attributed to its good adaptation to different environments. Results The barley HvSnRK gene family was elucidated in its entirety from publicly-available genome data and found to comprise 50 genes. Phylogenetic analyses assigned six of the genes to the HvSnRK1 subfamily, 10 to HvSnRK2 and 34 to HvSnRK3. The search was validated by applying it to Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) genome data, identifying 50 SnRK genes in rice (four OsSnRK1, 11 OsSnRK2 and 35 OsSnRK3) and 39 in Arabidopsis (three AtSnRK1, 10 AtSnRK2 and 26 AtSnRK3). Specific motifs were identified in the encoded barley proteins, and multiple putative regulatory elements were found in the gene promoters, with light-regulated elements (LRE), ABA response elements (ABRE) and methyl jasmonate response elements (MeJa) the most common. RNA-seq analysis showed that many of the HvSnRK genes responded to ABA, some positively, some negatively and some with complex time-dependent responses. Conclusions The barley HvSnRK gene family is large, comprising 50 members, subdivided into HvSnRK1 (6 members), HvSnRK2 (10 members) and HvSnRK3 (34 members), showing differential positive and negative responses to ABA.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhengwen Liu ◽  
Xingfen Wang ◽  
Zhengwen Sun ◽  
Yan Zhang ◽  
Chengsheng Meng ◽  
...  

Abstract Background Dirigent (DIR) proteins mediate regioselectivity and stereoselectivity during lignan biosynthesis and are also involved in lignin, gossypol and pterocarpan biosynthesis. This gene family plays a vital role in enhancing stress resistance and in secondary cell-wall development, but systematical understanding is lacking in cotton. Results In this study, 107 GbDIRs and 107 GhDIRs were identified in Gossypium barbadense and Gossypium hirsutum, respectively. Most of these genes have a classical gene structure without intron and encode proteins containing a signal peptide. Phylogenetic analysis showed that cotton DIR genes were classified into four distinct subfamilies (a, b/d, e, and f). Of these groups, DIR-a and DIR-e were evolutionarily conserved, and segmental and tandem duplications contributed equally to their formation. In contrast, DIR-b/d mainly expanded by recent tandem duplications, accompanying with a number of gene clusters. With the rapid evolution, DIR-b/d-III was a Gossypium-specific clade involved in atropselective synthesis of gossypol. RNA-seq data highlighted GhDIRs in response to Verticillium dahliae infection and suggested that DIR gene family could confer Verticillium wilt resistance. We also identified candidate DIR genes related to fiber development in G. barbadense and G. hirsutum and revealed their differential expression. To further determine the involvement of DIR genes in fiber development, we overexpressed a fiber length-related gene GbDIR78 in Arabidopsis and validated its function in trichomes and hypocotyls. Conclusions These findings contribute novel insights towards the evolution of DIR gene family and provide valuable information for further understanding the roles of DIR genes in cotton fiber development as well as in stress responses.


Genes ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 494 ◽  
Author(s):  
Xiaokang Zhuo ◽  
Tangchun Zheng ◽  
Zhiyong Zhang ◽  
Yichi Zhang ◽  
Liangbao Jiang ◽  
...  

NAC transcription factors (TFs) participate in multiple biological processes, including biotic and abiotic stress responses, signal transduction and development. Cold stress can adversely impact plant growth and development, thereby limiting agricultural productivity. Prunus mume, an excellent horticultural crop, is widely cultivated in Asian countries. Its flower can tolerate freezing-stress in the early spring. To investigate the putative NAC genes responsible for cold-stress, we identified and analyzed 113 high-confidence PmNAC genes and characterized them by bioinformatics tools and expression profiles. These PmNACs were clustered into 14 sub-families and distributed on eight chromosomes and scaffolds, with the highest number located on chromosome 3. Duplicated events resulted in a large gene family; 15 and 8 pairs of PmNACs were the result of tandem and segmental duplicates, respectively. Moreover, three membrane-bound proteins (PmNAC59/66/73) and three miRNA-targeted genes (PmNAC40/41/83) were identified. Most PmNAC genes presented tissue-specific and time-specific expression patterns. Sixteen PmNACs (PmNAC11/19/20/23/41/48/58/74/75/76/78/79/85/86/103/111) exhibited down-regulation during flower bud opening and are, therefore, putative candidates for dormancy and cold-tolerance. Seventeen genes (PmNAC11/12/17/21/29/42/30/48/59/66/73/75/85/86/93/99/111) were highly expressed in stem during winter and are putative candidates for freezing resistance. The cold-stress response pattern of 15 putative PmNACs was observed under 4 °C at different treatment times. The expression of 10 genes (PmNAC11/20/23/40/42/48/57/60/66/86) was upregulated, while 5 genes (PmNAC59/61/82/85/107) were significantly inhibited. The putative candidates, thus identified, have the potential for breeding the cold-tolerant horticultural plants. This study increases our understanding of functions of the NAC gene family in cold tolerance, thereby potentially intensifying the molecular breeding programs of woody plants.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10617
Author(s):  
Jie Li ◽  
Xinhao Liu ◽  
Qingmei Wang ◽  
Junyan Sun ◽  
Dexian He

To set a systematic study of the Sorghum cystatins (SbCys) gene family, a genome-wide analysis of the SbCys family genes was performed by bioinformatics-based methods. In total, 18 SbCys genes were identified in Sorghum, which were distributed unevenly on chromosomes, and two genes were involved in a tandem duplication event. All SbCys genes had similar exon/intron structure and motifs, indicating their high evolutionary conservation. Transcriptome analysis showed that 16 SbCys genes were expressed in different tissues, and most genes displayed higher expression levels in reproductive tissues than in vegetative tissues, indicating that the SbCys genes participated in the regulation of seed formation. Furthermore, the expression profiles of the SbCys genes revealed that seven cystatin family genes were induced during Bipolaris sorghicola infection and only two genes were responsive to aphid infestation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that 17 SbCys genes were induced by one or two abiotic stresses (dehydration, salt, and ABA stresses). The interaction network indicated that SbCys proteins were associated with several biological processes, including seed development and stress responses. Notably, the expression of SbCys4 was up-regulated under biotic and abiotic stresses, suggesting its potential roles in mediating the responses of Sorghum to adverse environmental impact. Our results provide new insights into the structural and functional characteristics of the SbCys gene family, which lay the foundation for better understanding the roles and regulatory mechanism of Sorghum cystatins in seed development and responses to different stress conditions.


2019 ◽  
Author(s):  
Yongbin Wang ◽  
Zhenfeng Jiang ◽  
Zhenxiang Li ◽  
Yuanling Zhao ◽  
Weiwei Tan ◽  
...  

Background. VQ proteins, the plant-specific transcription factors, are involved in the regulation of plant growth, development, and stress responses; however, few articles systematic reported VQ genes in the soybean. Methods. In total, we identified 75 GmVQ genes, which were classified into 7 groups (Ⅰ-Ⅶ). Conserved domain analysis indicated that VQ gene family members all contained the VQ domains. The VQ genes from the same evolutionary branches of soybean shared similar motifs and structures. Promoter analysis revealed cis-elements related to stress responses, phytohormone responses and controlling physical and reproductive growth. Based on the RNA-seq and qRT-PCR analysis, GmVQ genes were expressed in nine tissues suggested their putative function in many aspects of plant growth and development, and response to stresses in Glycine max. Results. The present study provided basic information for further analysis of the biological functions of GmVQ proteins in various development processes.


2020 ◽  
Author(s):  
Yihe Yu ◽  
Shengdi Yang ◽  
Lu Bian ◽  
Keke Yu ◽  
Xiangxuan Meng ◽  
...  

Abstract Background: RING is one of the largest E3 ubiquitin ligase families and C3H2C3 type is the largest subfamily of RING, playing an important role in plants’ development and growth and their biotic and abiotic stress responses. Results: A total of 143 RING C3H2C3-type genes (RCHCs) were discovered from the grapevine genome and separated into groups (I-XI) according to their phylogenetic analysis, with these genes named according to their positions on chromosomes. Gene replication analysis showed that tandem duplications play a predominant role in the expansion of VyRCHCs family together. Structural analysis showed that most VyRCHCs(67.13%) had no more than 2 introns, while genes clustered together based on phylogenetic trees had similar motifs and evolutionarily conserved structures. Cis-acting element analysis showed the diversity of VyRCHCs regulation. The expression profiles of eight DEGs in RNA-Seq after drought stress were similar to those in qRT-PCR analysis. The in vitro ubiquitin experiment showed that VyRCHC114 had E3 ubiquitin ligase activity, overexpression of VyRCHC114 in Arabidopsis improved drought tolerance, moreover, the transgenic plant survival rate increased by 30%, accompanied by changing of electrolyte leakage, chlorophyll content and the activities of SOD, POD, APX and CAT were changed. AtCOR15a, AtRD29A, AtERD15 and AtP5CS1 were expressed quantitatively, the results showed that they participated in the drought stress response may be regulated by the expression of VyRCHC114.Conclusions: Valuable new information on the evolution of grapevine RCHCs and its relevance for studying the functional characteristics of grapevine VyRCHC114 genes under drought stress emerged from this research.


2019 ◽  
Vol 99 (5) ◽  
pp. 577-588
Author(s):  
Xiaoxuan Xu ◽  
Bowei Yan ◽  
Ying Zhao ◽  
Feng Wang ◽  
Xunchao Zhao ◽  
...  

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the initial step of glycerolipids biosynthesis and contributes to oil production, membrane stabilization, and stress responses in plants. In major field crops, little information on the GPAT gene family and their potential stress-related functions were available. In this study, 15 GPAT gene family members were identified from the maize genome and designated as ZmGPAT1–ZmGPAT14 and ZMS1. The ZmGPAT proteins contained 371–557 amino acids and had a molecular weight between 42.7 and 61.2 kDa. Phylogenetic analysis revealed that ZmGPATs fell into four clusters. All 15 ZmGPAT proteins possessed conserved PlsC/LPLAT (phosphate acyltransferases/lysophospholipid acyltransferases) domains and featured multiple acyltransferase motifs. The expression profiles of ZmGPAT genes were different in various tissues of maize and the elevated expression of several ZmGPAT genes occurred at early seed developmental stages. In response to environmental stresses, differential expression of ZmGPATs had been observed, highlighted by the significant induction of transcripts accumulation of some ZmGPATs under cold treatment. This study will help to better understand the potential roles of GPAT in oil production and development and abiotic stress responses in field crops.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


2019 ◽  
Vol 20 (22) ◽  
pp. 5676 ◽  
Author(s):  
Haifeng Yan ◽  
Mingzhi Li ◽  
Yuping Xiong ◽  
Jianming Wu ◽  
Jaime A. Teixeira da Silva ◽  
...  

WRKY proteins are a large superfamily of transcription factors that are involved in diverse biological processes including development, as well as biotic and abiotic stress responses in plants. WRKY family proteins have been extensively characterized and analyzed in many plant species, including Arabidopsis, rice, and poplar. However, knowledge on WRKY transcription factors in Santalum album is scarce. Based on S. album genome and transcriptome data, 64 SaWRKY genes were identified in this study. A phylogenetic analysis based on the structures of WRKY protein sequences divided these genes into three major groups (I, II, III) together with WRKY protein sequences from Arabidopsis. Tissue-specific expression patterns showed that 37 SaWRKY genes were expressed in at least one of five tissues (leaves, roots, heartwood, sapwood, or the transition zone), while the remaining four genes weakly expressed in all of these tissues. Analysis of the expression profiles of the 42 SaWRKY genes after callus was initiated by salicylic acid (SA) and methyl jasmonate (MeJA) revealed that 25 and 24 SaWRKY genes, respectively, were significantly induced. The function of SaWRKY1, which was significantly up-regulated by SA and MeJA, was analyzed. SaWRKY1 was localized in the nucleus and its overexpression improved salt tolerance in transgenic Arabidopsis. Our study provides important information to further identify the functions of SaWRKY genes and to understand the roles of SaWRKY family genes involved in the development and in SA- and MeJA-mediated stress responses.


Sign in / Sign up

Export Citation Format

Share Document