Artificial Lift Experts Warn of Long-Term Production Issues in Horizontal Wells

2015 ◽  
Vol 67 (10) ◽  
pp. 50-53 ◽  
Author(s):  
Trent Jacobs
2021 ◽  
Vol 73 (01) ◽  
pp. 28-31
Author(s):  
Trent Jacobs

Pumping proppant down a wellbore is the easy part. Ensuring that the precious material does its job is another matter. A trio of field studies recently presented at the 2020 SPE Annual Technical Conference and Exhibition (ATCE) highlight in different ways how emerging technology and old-fashioned problem solving are moving the industry needle on proppant and conductivity control. These examples include the adoption of unconventional completion techniques in a conventional oil field in Russia and work to validate the use of small amounts of ceramic proppant in North Dakota’s tight-oil formations. Both studies seek to counter widely held assumptions about proppant conductivity. A third study details a recently developed chemical coating that Permian Basin producers are applying “on the fly” to sand before it is pumped downhole. The new adhesive material has found a niche in helping operators mitigate the amount of sand that returns to surface during flowback, a sectorwide issue that drives up completion costs and later may spell trouble for artificial lift systems. Disproving “The Overflush Paradigm” After conventional reservoirs are hydraulically fractured, both from vertical and horizontal wells, it has been standard practice for decades to treat the newly propped perforations with a gentle touch. The approach to this end is known as underflushing. When underflushing, the goal is to leave behind just a few barrels’ worth of proppant-laden slurry over the perforations before attempting to complete further stages. The motivation for this boils down to the need for an insurance policy against displacing the near-wellbore proppant pack and causing the open fracture face to pinch off before it ever has a chance to transmit hydrocarbons. Such carefulness comes at a price. Underflushing raises the risk of needing a cleanout before oil can flow optimally to surface. This not only delays the arrival of first oil, it means extra equipment and personnel are required. However, a more glaring downside to underflushing is that it appears to be an unnecessary precaution. The near-wellbore fracture area is, in fact, more robust than what conventional wisdom allows credit for.


2021 ◽  
Author(s):  
Nasser AlAskari ◽  
Muhamad Zaki ◽  
Ahmed AlJanahi ◽  
Hamed AlGhadhban ◽  
Eyad Ali ◽  
...  

Abstract Objectives/Scope: The Magwa and Ostracod formations are tight and highly fractured carbonate reservoirs. At shallow depth (1600-1800 ft) and low stresses, wide, long and conductive propped fracture has proven to be the most effective stimulation technique for production enhancement. However, optimizing flow of the medium viscosity oil (17-27 API gravity) was a challenge both at initial phase (fracture fluid recovery and proppant flowback risks) and long-term (depletion, increasing water cut, emulsion tendency). Methods, Procedures, Process: Historically, due to shallow depth, low reservoir pressure and low GOR, the optimum artificial lift method for the wells completed in the Magwa and Ostracod reservoirs was always sucker-rod pumps (SRP) with more than 300 wells completed to date. In 2019 a pilot re-development project was initiated to unlock reservoir potential and enhance productivity by introducing a massive high-volume propped fracturing stimulation that increased production rates by several folds. Consequently, initial production rates and drawdown had to be modelled to ensure proppant pack stability. Long-term artificial lift (AL) design was optimized using developed workflow based on reservoir modelling, available post-fracturing well testing data and production history match. Results, Observations, Conclusions: Initial production results, in 16 vertical and slanted wells, were encouraging with an average 90 days production 4 to 8 times higher than of existing wells. However, the initial high gas volume and pressure is not favourable for SRP. In order to manage this, flexible AL approach was taken. Gas lift was preferred in the beginning and once the production falls below pre-defined PI and GOR, a conversion to SRP was done. Gas lift proved advantageous in handling solids such as residual proppant and in making sure that the well is free of solids before installing the pump. Continuous gas lift regime adjustments were taken to maximize drawdown. Periodical FBHP surveys were performed to calibrate the single well model for nodal analysis. However, there limitations were present in terms of maximizing the drawdown on one side and the high potential of forming GL induced emulsion on the other side. Horizontal wells with multi-stage fracturing are common field development method for such tight formations. However, in geological conditions of shallow and low temperature environment it represented a significant challenge to achieve fast and sufficient fracture fluid recovery by volume from multiple fractures without deteriorating the proppant pack stability. This paper outlines local solutions and a tailored workflow that were taken to optimize the production performance and give the brown field a second chance. Novel/Additive Information: Overcoming the different production challenges through AL is one of the keys to unlock the reservoir potential for full field re-development. The Magwa and Ostracod formations are unique for stimulation applications for shallow depth and range of reservoirs and fracture related uncertainties. An agile and flexible approach to AL allowed achieving the full technical potential of the wells and converted the project to a field development phase. The lessons learnt and resulting workflow demonstrate significant value in growing AL projects in tight and shallow formations globally.


2021 ◽  
Author(s):  
Yifei Guo ◽  
Pradeepkumar Ashok ◽  
Eric van Oort ◽  
Ross Patterson ◽  
Dandan Zheng ◽  
...  

Abstract Well interference, which is commonly referred to as frac hits, has become a significant factor affecting production in fractured horizontal shale wells with the increase in infill drilling in recent years. Today, there is still no clear understanding on how frac hits affect production. This paper aims to develop a process to automatically identify the different types of frac hits and to determine the effect of stage-to-well distance and frac hit intensity on long-term parent well production. First, child well completions data and parent well pressure data are processed by a frac hit detection algorithm to automatically identify different frac hit intensities and duration within each stage. This algorithm classifies frac hits based on the magnitude of the differential pressure spikes. The frac stage to parent well distance is also calculated. Then, we compare the daily production trend before and after the frac hits to determine the severity of its influence on production. Finally, any evident correlations between the stage-to-well distance, frac hit intensity and production change are identified and investigated. This work utilizes 3 datasets covering 22 horizontal wells in the Bakken Formation and 37 horizontal wells in the Eagle Ford Shale Formation. These sets included well trajectories, child well completions data, parent well pressure data and parent well production data. The frac hit detection algorithm developed can accurately detect frac hits in the available dataset with minimal false alerts. The data analysis results show that frac hit severity (production response) and intensity (pressure response) are not only affected by the distance between parent and child wells, but also affected by the directionality of the wells. Parent wells tend to experience more frac hits from the child frac stages with smaller direction angles and shorter stage-to-parent distances. Formation stress change with time is another factor that affects frac hit intensity. Depleted wells are more susceptible to frac hits even if they are further from the child wells. Also, we observe frac hits in parent wells due to a stimulation of a child well in a different shale formation. This paper presents a novel automated frac hit detection algorithm to quickly identify different types of frac hits. This paper also presents a novel way of carrying out production analysis to determine whether frac hits in a well have positive or negative influence long-term production. Additionally, the paper introduces the concept of the stage-to-well distance as a more accurate metric for analyzing the influence of frac hits on production.


SPE Journal ◽  
2013 ◽  
Vol 18 (04) ◽  
pp. 795-812 ◽  
Author(s):  
C.R.. R. Clarkson ◽  
J.D.. D. Williams-Kovacs

Summary Early fluid production and flowing pressure data gathered immediately after fracture stimulation of multifractured horizontal wells may provide an early opportunity to generate long-term forecasts in shale-gas (and other hydraulically fractured) reservoirs. These early data, which often consist of hourly (if not more frequent) monitoring of fracture/formation fluid rates, volumes, and flowing pressures, are gathered on nearly every well that is completed. Additionally, fluid compositions may be monitored to determine the extent of load fluid recovery, and chemical tracers added during stage treatments to evaluate inflow from each of the stages. There is currently debate within the industry of the usefulness of these data for determining the long-term production performance of the wells. “Rules of thumb” derived from the percentage of load-fluid recovery are often used by the industry to provide a directional indication of well performance. More-quantitative analysis of the data is rarely performed; it is likely that the multiphase-flow nature of flowback and the possibility of early data being dominated by wellbore-storage effects have deterred many analysts. In this work, the use of short-term flowback data for quantitative analysis of induced-hydraulic-fracture properties is critically evaluated. For the first time, a method for analyzing water and gas production and flowing pressures associated with the flowback of shale-gas wells, to obtain hydraulic-fracture properties, is presented. Previous attempts have focused on single-phase analysis. Examples from the Marcellus shale are analyzed. The short (less than 48 hours) flowback periods were followed by long-term pressure buildups (approximately 1 month). Gas + water production data were analyzed with analytical simulation and rate-transient analysis methods designed for analyzing multiphase coalbed-methane (CBM) data. This analogy is used because two-phase flowback is assumed to be similar to simultaneous flow of gas and water during long-term production through the fracture system of coal. One interpretation is that the early flowback data correspond to wellbore + fracture volume depletion (storage). It is assumed that fracture-storage volume is much greater than wellbore storage. This flow regime appears consistent with what is interpreted from the long-term pressure-buildup data, and from the rate-transient analysis of flowback data. Assuming further that the complex fracture network created during stimulation is confined to a region around perforation clusters in each stage, one can see that fluid-production data can be analyzed with a two-phase tank-model simulator to determine fracture permeability and drainage area, the latter being interpreted to obtain an effective (producing) fracture half-length given geometrical considerations. Total fracture half-length, derived from rate-transient analysis of online (post-cleanup) data, verifies the flowback estimates. An analytical forecasting tool that accounts for multiple sequences of post-storage linear flow, followed by late-stage boundary flow, was developed to forecast production with flowback-derived parameters, volumetric inputs, matrix permeability, completion data, and operating constraints. The preliminary forecasts are in very good agreement with online production data after several months of production. The use of flowback data to generate early production forecasts is therefore encouraging, but needs to be tested for a greater data set for this shale play and for other plays, and should not be used for reserves forecasting.


2007 ◽  
Author(s):  
Dmitry Baranov ◽  
Roman Kontarev ◽  
Dmitry Senchenko ◽  
Ildar Faizullin ◽  
Albert Gayfullin ◽  
...  

2021 ◽  
Author(s):  
E.A. Malyavko ◽  
S.Y. Shtun ◽  
A.A. Senkov ◽  
O.I. Abramenko ◽  
А.V. Buyanov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document