Equilibrium of a Microemulsion That Coexists With Oil or Brine

1983 ◽  
Vol 23 (05) ◽  
pp. 829-847 ◽  
Author(s):  
Chun Huh

Huh, Chun; SPE; Exxon Production Research Co. Abstract When salinity, or an equivalent variable, is increased, microemulsions generally undergo orderly transitions from a lower-to middle- to upper-phase. Even though the significance of such multiphase behavior has been well recognized in the design of surfactant flood processes, their quantitative nature in terms of the molecular structures of the surfactant lipophile, hydrophile, and the oil and brine salinity has not been fully understood. A theory of lower- and upper-phase microemulsions that gives reasonable predictions of their interfacial tensions (IFT's) and phase behavior is presented. In the theory, the surfactant monomers adsorbed at oil/brine interface cause the interface to bend as a result of an imbalance between the hydrophile/brine interaction on the one hand and lipophile/oil interaction on the other. With sufficient imbalance, high local curvature causes small drops of one phase to disperse into the other. In addition, interactions between these drops are taken into account for the microemulsion equilibrium. The theory also offers a possibility of being able to describe the hydrophile/lipophile-balanced state (optimal salinity state of Healy and Reed) in terms of the tendency of surfactant layer at the oil/brine interface to bend. Introduction Understanding the phase behavior of microemulsions is an important step in designing surfactant flooding processes and interpreting the results when they are applied to recover tertiary oil. It is well established that the phase behavior of many microemulsion systems, even those containing a large phase behavior of many microemulsion systems, even those containing a large number of different components can be represented qualitatively using pseudoternary diagrams similar to those in Fig. 1. Fig. 1a shows the pseudoternary diagrams similar to those in Fig. 1. Fig. 1a shows the lower-phase microemulsion in equilibrium with excess oil, Figs. 1b and 1c the middle-phase microemulsion in equilibrium with both oil and brine, and Fig. 1d the upper-phase microemulsion coexistent with excess water. Even though not all microemulsions conform to this simple picture, it serves as a good approximation frequently enough to use it as a basis for discussing microemulsion phase behavior. Transitions such as those shown by Fig. 1 can be produced by changing any of a large number of variables in a systematic manner. The phase shifts from "a" to "d" generally occur with increases in the salinity of the brine, the alkyl chain length of the surfactant, the aromaticity of the oil, the addition of a highly oil- soluble alcohol and a temperature increase (for non-ionic surfactants). The shifts also occur with decreases in the chain length of oil, the number of hydrophilic groups (e.g., ethylene oxide) of the surfactant, the addition of a highly water-soluble alcohol, and a temperature decrease (for most ionic surfactants). Since microemulsion phase transitions will be determined by the manner in which microemulsion structure depends on changes in the variables described above, many experimental studies have been made to determine microemulsion structure. Ultracentrifuge and light-scattering measurements show that the lower-phase microemulsion consists of spherical oil drops with radius of about 50 to 1,000 k in water. As it moves toward the middle-phase state (see Figs. 1a and 1b), the drop radius grows. On the other hand, the upper-phase microemulsion consists of small water drops in oil, and as it moves toward the middle-phase state (Figs. 1c and 1d), the drop radius again grows. Very little is known about the structure of middle-phase microemulsions. SPEJ p. 829

1982 ◽  
Vol 22 (06) ◽  
pp. 816-830 ◽  
Author(s):  
Gary A. Pope ◽  
Kerming Tsaur ◽  
Robert S. Schechter ◽  
Ben Wang

Abstract We made static measurements of the phase volumes of mixtures of surfactant, polymer, alcohol, water, oil, sodium chloride, and in some cases polymer additives. We also made a limited number of viscosity, phase concentration, and interfacial tension (IFT) measurements. The purpose was to determine systematically the effect of various polymers on the phase behavior of various surfactant formulations. We made measurements with and without oil (n-octane and n-octane/benzene mixtures) across a range of salinity appropriate to the particular surfactant at temperatures between 24 and 75 degrees C. Introduction The oil-free (i.e., no added oil) solutions showed a characteristic phase separation into an aqueous surfactant-rich phase and an aqueous polymer-rich phase at some sufficiently high salinity (NaCl concentration), which we call the critical electrolyte concentration (CEC). The CEC was found to be a characteristic of a given surfactant/alcohol combination that shifts with the solubility of the surfactant qualitatively the same way as does the optimal salinity: but the CEC was found independent of the polymer type, polymer concentration (between the 100- and 1,000-ppm limits investigated), and surfactant concentration. The CEC increases with increasing temperature for the anionic surfactants and decreases with increasing temperature for the nonionic surfactants. When oil was added to the mixtures, an entirely different pattern of phase behavior was observed. As salinity increases, the particular formulations form the typical sequence of lower-phase microemulsion and excess oil, middle-phase microemulsion. excess oil, and excess brine: and upper-phase microemulsion and excess brine. The sequence with polymer was precisely the same over most of the salinity range but deviated over a limited range of salinity; the three-phase region simply shifted a small distance to the left on the salinity scale. Also, and probably more significantly, some of the aqueous phases in the critical region of the shift (which is also just above oil-free CEC salinity) were found to be gel-like in nature. These apparently occur under conditions such that the polymer concentration in the excess brine of the three-phase systems becomes very high because almost all the polymer is always in the brine phase, even when the brine phase is very small. Thus an overall 1,000 ppm of polymer easily can be concentrated to 10,000 ppm or more. One of the most remarkable aspects of the phase behavior of the surfactant/polymer systems is that the same patterns are observed for all combinations of anionic and nonionic surfactants and polymers. Also, little difference was observed in the IFT values with and without polymer. The three-phase systems still exhibited ultralow IFT values. Obviously, significant differences did occur in the brine viscosities when polymer was added. The polymer-free mixtures were themselves quite viscous, however, and the viscosity of the oil-free surfactant-rich phases (above the CEC) was significantly higher when the phases were in equilibrium with a polymer-rich aqueous phase, even though they apparently contained almost no polymer. We found that the polymer-rich phases had normal viscosities, as judged by the same polymer in the same brine at the expected concentration, assuming all the polymer was in the polymer-rich phase. The effect of polymer on the systems with oil was to increase the viscosity of the water-rich phase only, with little effect on the microemulsion phase unless it was the water-rich phase. SPEJ P. 816^


1983 ◽  
Vol 23 (03) ◽  
pp. 486-500 ◽  
Author(s):  
G.J. Hirasaki ◽  
H.R. van Domselaar ◽  
R.C. Nelson

Abstract Salinity design goals are to keep as much surfactant as possible in the active region and to minimize surfactant possible in the active region and to minimize surfactant retention. Achieving these is complicated becausecompositions change as a result of dispersion, chromatographic separation of components distributed among two or more phases, and retention by adsorption onto rock and/or absorption in a trapped phase-.in the presence of divalent ions, optimal salinity is not constant but a function of surfactant concentration and calcium/sodium ratio: andthe changing composition of a system strongly influences transport of the components. A one-dimensional (ID) six-component finite-difference simulator was used to compare a salinity gradient design with a constant salinity design. Numerical dispersion was used to evaluate the effects of dispersive mixing. These simulations show that, with a salinity gradient, change of phase behavior with salinity can be used to advantage both to keep surfactant in the active region and to minimize retention. By contrast, under some conditions with a constant salinity design. it is possible to have early surfactant breakthrough and/or large surfactant retention. Other experiments conducted showed that high salinity does retard surfactant, and, if the drive has high salinity. a great amount of surfactant retention can result. The design that produced the best recovery had the water flood brine over optimum and the drive under optimum; the peak surfactant concentration occurred in the active region and oil production ceased at the same point. Introduction The phase behavior of surfactant/oil/brine systems for different salinities is shown in Fig. 1. Low salinities. called "underoptimum" or "Type II(−)" phase behavior, are shown at the top of Fig. 1. In this kind of system, surfactant is partitioned predominantly into the aqueous phase. predominantly into the aqueous phase. High salinities, called "overoptimum" or "Type II(+)" phase behavior, are shown at the bottom of Fig. 1. In this kind of system, surfactant is partitioned predominantly into the oleic phase. When the oleic phase predominantly into the oleic phase. When the oleic phase has a low oil concentration, the oil is said to be "swollen" by the surfactant and brine. At moderate salinities, the system can have up to three phases and is called "Type III." This is illustrated in the phases and is called "Type III." This is illustrated in the middle of Fig. 1. The salinity at which the middle phase has a WOR of unity is called "optimal salinity" because the lowest interfacial tensions (IFT's) usually occur near this salinity. As salinity increases, there is a steady progression from Type II(−) to Type III to Type II(+) phase behavior. The middle-phase composition moves from the brine side of the diagram to the oil side. The two-phase regions that correspond to the Type II(−) and Type II( +) systems can be seen above the three-phase region in Fig. 1.


1982 ◽  
Vol 22 (05) ◽  
pp. 743-749 ◽  
Author(s):  
Alain Graciaa ◽  
Lester N. Fortney ◽  
Robert S. Schechter ◽  
William H. Wade ◽  
Seang Yiv

Abstract The phase behavior of nonionic surfactants having the same hydrophilic/lipophilic balance (HLB) but differing molecular weights has been studied. It is shown that the optimal alkane carbon number (ACN) depends on the HLB, but that increasing the hydrophobe molecular weight narrows the middle phase region, increases the solubilization parameter, and decreases the interfacial tension (IFT). We found that the width of the three-phase region is in simple inverse proportion to the solubilization parameter at optimal salinity and that the multiple of IFT times the square of the solubilization is a constant. We also found it possible to synthesize nonionics that rival anionics in the properties mentioned above. Introduction There is increasing evidence that the phase behavior of surfactant/oil/brine systems and the efficiency of oil recovery with micellar solutions are connected intimately. For instance, laboratory core floods have shown that surfactant systems exhibit maximum oil recovery at the optimal salinity. The concept of optimal salinity, introduced by Healy and Reed, is especially useful because it pen-nits screening of surfactant systems by relatively simple experiments requiring the observation of the number and the types of phases that coexist at equilibrium when surfactant/oil/brine mixtures are blended. Optimal salinity, defined as that middle-phase microemulsion system containing equal volumes of oil and water, is not difficult to determine, and, thus, conditions for the most efficient surfactant system can be established. It is now well known that many different surfactant systems have the same optimal salinity. Further, it generally has been assumed, but not definitely established by laboratory experiments that the preferred surfactant system, selected from a group of systems having the same optimal salinity, will be that which solubilizes the largest volume of oil and brine per unit mass of surfactant. We do not necessarily subscribe to this simple view. since there are many factors other than solubilization (such as surfactatant retention) that may influence oil recovery efficiency however, all other factors being equal, it is reasonable to attempt to maximize solubilization, especially because it has been found synonymous with minimal IFT's-an equally important factor governing effectiveness of oil recovery. This paper seeks to identify some surfactant structural features that will lead to increased solubilization and decreased IFT. We have addressed this important question in past publications but have met with only limited success. The difficulty has been that changing the surfactant structure dictates that a second corresponding change be made so that the resulting system would remain optimal. For instance, one can increase the length of the hydrocarbon tail of the surfactant molecule and at the same time compensate for this change either by decreasing the amount of hydrophobic alcohol added to the system or by decreasing the salinity of the system. The results obtained in this manner have remained difficult to interpret because all changes can and most often do alter the solubilization of oil and water in the middle-phase microemulsion. Therefore, it was not possible to separate that pan of the resulting solubilization change caused strictly by the modification of the surfactant structure. In the study discussed here, we made compensating changes in the surfactant structure, keeping all other variables fixed. For nonionic surfactants, compensating changes can be made in several ways. SPEJ P. 743^


1981 ◽  
Vol 21 (05) ◽  
pp. 581-592 ◽  
Author(s):  
Creed E. Blevins ◽  
G. Paul Willhite ◽  
Michael J. Michnick

Abstract The three-phase region of the Witco TRS 10-80 sulfonate/nonane/isopropanol (IPA)/2.7% brine system was investigated in detail. A method is described to locate phase boundaries on pseudoternary diagrams, which are slices of the tetrahedron used to display phase boundaries of the four-component system.The three-phase region is wedge-like in shape extending from near the hydrocarbon apex to a point near 20% alcohol on the brine/alcohol edge of the tetrahedron. It was found to be triangular in cross section on pseudoternary diagrams of constant brine content, with its base toward the nonane/brine/IPA face. The apex of the three-phase region is a curved line where the M, H + M, and M + W regions meet. On this line, the microemulsion (M*) is saturated with hydrocarbon, brine, and alcohol for a particular sulfonate content. A H + M region exists above the three-phase region, and an M + W region exists below it.Relationships were found between the alcohol concentration of the middle phase and the sulfonate/alcohol and sulfonate/hydrocarbon ratios in the middle phase. These correlations define the curve that represents the locus of saturated microemulsions in the quaternary phase diagram. Alcohol contents of excess oil and brine phases also were correlated with alcohol in the middle phase.Pseudoternary diagrams for sulfonates are presented to provide insight into the evolution of the three-phase region with salinity. Surfactants include Mahogany AA, Phillips 51918, Suntech V, and Stepan Petrostep(TM) 500. Differences between phase diagrams follow trends inferred from comparisons of equivalent weights, mono-/disulfonate content, optimal salinity, and EPACNUS values. Introduction The displacement of oil from a porous rock by microemulsions is a complex process. As the microemulsion flows through the rock, it mixes with and/or solubilizes oil and water. The composition of the microemulsion is altered by adsorption of sulfonate, leading to expulsion of water and/or oil. Multiphase regions are encountered where phases may flow at different velocities depending on the fluid/rock interactions. Knowledge of phase behavior of microemulsion systems is required to understand the displacement mechanisms, to model process performance, and to select suitable compositions for injection.Microemulsions used in oil recovery processes consist of five components: oil, water, salt, surfactant (usually a petroleum sulfonate and a cosurfactant (usually an alcohol). Brine frequently is considered to be a pseudocomponent. When this assumption is valid, a microemulsion may be studied as a four-component system.Windsor developed a qualitative explanation and classification scheme for microemulsion phase behavior. Healy and Reed showed that Windsor's concepts were applicable to microemulsions used in oil recovery processes. Healy et al. introduced the concept of optimal salinity to define a particular characteristic of surfactant system. The optimal salinity for phase behavior was defined as the salinity where the middle phase of a three-phase system has equal solubility of oil and brine. They also found that optimal salinity determined in this manner was close to the salinity where the interfacial tension between the upper and middle phases was equal to the interfacial tension between the middle and lower phases.Salager et al. developed a correlation of optimal salinity data for a particular surfactant. SPEJ P. 581^


1982 ◽  
Vol 22 (01) ◽  
pp. 53-60 ◽  
Author(s):  
William J. Benton ◽  
Natoli John ◽  
Syed Qutubuddin ◽  
Surajit Mukherjee ◽  
Clarence M. Miller

William J. Benton, Carnegie-Mellon U. John Natoli, Carnegie-Mellon U. Qutubuddin, Syed SPE, Carnegie-Mellon U. Mukherjee, Surajit, Carnegie-Mellon U. Miller, Clarence M., SPE, Carnegie-Mellon U. Fort Jr., Tomlinson, Carnegie-Mellon U. Abstract Phase behavior studies were carried out for two systems containing pure surfactants but exhibiting behavior similar to that of commercial petroleum sulfonates. One system contained the isomerically pure surfactant sodium-8-phenyl-n-hexadecyl-n-sulfonate (Texas 1). The other contained sodium dodecyl sulfate (SDS). Additional components used in both systems were various pure short-chain alcohols, NaCl brine and n-decane. Aqueous solutions containing surfactant, cosurfactant, and NaCl were studied over a wide range of compositions with polarizing and modulation contrast microscopy, as well as the polarized light screening technique. Viscosity measurements were conducted on selected scans of the Texas 1 system. Maxima and minima of the scans were correlated with textural changes observed with microscopy. The aqueous solutions were contacted with equal volumes of n-decane, and phase behavior and interfacial tensions were determined. The middle microemulsion phase was found to be oil continuous close to the upper phase boundary and water continuous close to the lower phase boundary. Both the Texas 1 and SDS systems showed similar behavior in that the middle microemulsion phase was observed over the entire range of surfactant concentrations studied. Introduction Surfactant systems usually consisting of petroleum sulfonate, an alcohol, salt, and water have been used for enhanced oil recovery. Various parameters important to oil recovery by surfactant flooding, such as interfacial tension and viscosity, are related strongly to the phase behavior of the microemulsion systems. The relationship of ultralow interfacial tensions to phase separation has been treated in our laboratory. The recovery of petroleum from laboratory cores and field tests appears to be related directly to phase behavior. It is important to understand phase behavior to identify the mechanisms involved and improve the efficiency of the oil-recovery process. The physicochemical aspects of the phase behavior of microemulsion systems containing commercial petroleum sulfonates as surfactants have been well documented by Healy and Reed and others. However, the systems studied were not pure, and the commercial surfactants sometimes contained as much as 40% inactive ingredients. There is a need to develop model microemulsion systems using pure components. Such systems would provide an experimental platform for verifying or interpreting the implications of any model for the phase behavior of multicomponent microemulsion systems and also allow the behavior of commercial systems to be predicted and understood. The objective of our work has been to fulfill these needs. Microemulsions have been classified as lower phase (l), upper phase (u), or middle phase (m) in equilibrium with excess oil, excess brine, or both excess oil and brine, respectively. Transitions among these phases have been studied as functions of salinity, alcohol concentration, temperature, etc. The middle-phase microemulsion is particularly significant because microemulsion/excess brine and microemulsion/excess oil tensions can be ultra low simultaneously. The concept of an optimal parameter as proposed originally by Reed and Healy when equal amounts of oil and brine are solubilized in the middle phase has been followed in this paper. We have shown earlier that the structure of petroleum sulfonate solutions exhibits a general pattern of variation with salinity. SPEJ P. 53^


Author(s):  
Md. Hamidul Kabir ◽  
Ravshan Makhkamov ◽  
Shaila Kabir

The solution properties and phase behavior of ammonium hexylene octyl succinate (HOS) was investigated in water and water-oil system. The critical micelle concentration (CMC) of HOS is lower than that of anionic surfactants having same carbon number in the lipophilic part. The phase diagrams of a water/ HOS system and water/ HOS/ C10EO8/ dodecane system were also constructed. Above critical micelle concentration, the surfactant forms a normal micellar solution (Wm) at a low surfactant concentration whereas a lamellar liquid crystalline phase (La) dominates over a wide region through the formation of a two-phase region (La+W) in the binary system. The lamellar phase is arranged in the form of a biocompatible vesicle which is very significant for the drug delivery system. The surfactant tends to be hydrophilic when it is mixed with C10EO8 and a middle-phase microemulsion (D) is appeared in the water-surfactant-dodecane system where both the water and oil soluble drug ingredient can be incorporated in the form of a dispersion. Hence, mixing can tune the hydrophile-lipophile properties of the surfactant. Key words: Ammonium hexylene octyl succinate, mixed surfactant, lamellar liquid crystal, middle-phase microemulsion. Dhaka Univ. J. Pharm. Sci. Vol.3(1-2) 2004 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


1960 ◽  
Vol 38 (1) ◽  
pp. 859-864
Author(s):  
Erich Baer ◽  
Tibor Gróf

L-α-(Dihexanoyl)cephalin has been synthesized by the phosphorylation of D-α,β-dihexanoylglycerol with phenylphosphoryl dichloride and pyridine, esterification of the reaction product, viz. dihexanoyl-L-α-glycerylphenylphosphoryl chloride, with N-carbobenzoxyethanolamine, and simultaneous removal of the protective groups of dihexanoyl-L-α-glycerylphenylphosphoryl-N-carbobenzoxyethanolamine by catalytic hydrogenolysis. The L-α-(dihexanoyl)cephalin is soluble in water.Infrared evidence supports the inner-salt structure of cephalins in chloroform solution.


2006 ◽  
Vol 110 (21) ◽  
pp. 10332-10340 ◽  
Author(s):  
Anna Svensson ◽  
Jens Norrman ◽  
Lennart Piculell

Sign in / Sign up

Export Citation Format

Share Document