Produced Water Reinjection in Mature Field With High Water Cut

Author(s):  
William Navarro
2021 ◽  
Author(s):  
Saransh Surana

Abstract Reservoir uncertainties, high water cut, completion integrity along with declining production are the major challenges of a mature field. These integrated with dying facilities and poor field production are key issues that each oil and gas company is facing these days. Arresting production decline is an inevitable objective, but with the existing techniques/steps involved, it becomes a cumbersome and exorbitant affair for the operators to meet their requirements. In addition, incompetent and flawed well data makes it more challenging to analyze mature fields. Although flow rate data is the most easily accessible data for mature fields, the absence of pressure data (flowing bottom-hole or wellhead pressure) remains a big obstacle for the application of conventional production enhancement and well screening strategies for most of the mature fields. A real-time optimization tool is thus constructed by developing a hybrid modelling technique that encapsulates Kriging and Fuzzy Logic to account for the imprecisions and uncertainties involved while identification of subsurface locations for production optimization of a mature field using only production data. The data from the existing wells in the field is used to generate a membership function based on its historical performance and productivity, thereby generating a spatial map of prospective areas, where secondary development operations can be taken up for production optimization.


2021 ◽  
Vol 73 (09) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 200957, “Application of Specially Designed Polymers in High-Water-Cut Wells: A Holistic Well-Intervention Technology Applied in Umm Gudair Field, Kuwait,” by Ali Abdullah Al-Azmi, SPE, Thanyan Ahmed Al-Yaqout, and Dalal Yousef Al-Jutaili, Kuwait Oil Company, et al., prepared for the 2020 SPE Trinidad and Tobago Section Energy Resources Conference, originally scheduled to be held in Port of Spain, Trinidad and Tobago, 29 June–1 July. The paper has not been peer reviewed. A significant challenge faced in the mature Umm Gudair (UG) field is assurance of hydrocarbon flow through highly water-prone intervals. The complete paper discusses the field implementation of a downhole chemical methodology that has positively affected overall productivity. The treatment was highly modified to address the challenges of electrical-submersible-pump (ESP)-driven well operations, technical difficulties posed by the formation, high-stakes economics, and high water potential from these formations. Field Background and Challenge The UG field is one of the major oil fields in Kuwait (Fig. 1). The Minagish oolite (MO) reservoir is the main oil producer, contributing more than 95% of current production in the UG field. However, water cut has been increasing (approximately 65% at the time of writing). The increasing water cut in the reservoir is posing a major challenge to maintaining the oil-production rate because of the higher mobility of water compared with that of oil. The natural water aquifer support in the reservoir that underlies the oil column extends across the reservoir and is rising continuously. This has led to a decline in the oil-production rate and has prevented oil-producing zones from contributing effectively. The reservoir experiences water-coning phenomena, especially in high-permeability zones. Oil viscosity ranges from 2 to 8 cp, and hydrogen sulfide and carbon dioxide levels are 1.5 and 4%, respectively. During recent years, water production has increased rapidly in wells because of highly conductive, thick, clean carbonate formations with low structural dip as well as some stratified formations. Field production may be constrained by the capacity of the surface facilities; therefore, increased water production has different effects on field operations. The average cost of handling produced water is estimated to be between $5 billion and $10 billion in the US and approximately $40 billion globally. These volumes often are so large that even incremental modifications can have major financial effects. For example, the lift-ing cost of one barrel of oil doubles when water cut reaches 50%, increases fivefold at 80% water cut, and increases twenty-fold at 95% water cut.


Author(s):  
Jie Wang ◽  
Fujian Zhou ◽  
Lufeng Zhang ◽  
Fan Fan ◽  
Hong Yang

Water logging problem in late production reservoir with abundant edge-bottom water and water-gas layer stagger is one of the main factors that lead to production wells stop flow. For the water plugging problem during gas well production, the common operation is coiled tubing through casing. So, coiled tubing technology without moving production string is explored. X oilfield is located in Sichuan basin of China southwest and belongs to the origin of gas pipeline from Sichuan to China east. Its main gas producing area is carbonatite full of edge water and controlled by structural and lithology. The relationship between water and gas is complex and water-gas system is independent of different blocks and different layers. Because the main gas producing layer is close to the water layer, lots of gas producing wells stop spray for high water cut. At the meantime, the difficulty and risk of water plugging increases for its high depth of main gas producing layer and high temperature at the well bottom. To solve the problem above, cement slurry system with the characteristics of high temperature and sulfur resistant and channeling preventing is developed. At the same time, the cement slurry system has low friction and high liquidity and is easy to flow through the coiled tubing. Besides, cement slurry pollution is reduced and the success rate of gas well produced water plugging is improved by the combination of coiled tubing and cementing process and the construction technology optimization, software simulation and laboratory evaluation is carried out. The key step is that log analysis of water and gas distribution is done first. Then, tubing-expansion bridge plug is placed under the water layer and the cement slurry is sent to the desired location. At last, coiled tubing is put down after cement solidification and gas production is recovered. The measurement of coiled tubing and cement slurry system is positive for water plugging in gas wells with high depth and temperature. The oilfield test results show that daily gas production is improved largely and liquid production is reduced by 90% of 4 wells with high water cut through water plugging. Besides, operation cost is reduced and the pollution problem caused by produced water is also solved, which can provide certain significance for the same type wells need water plugging operation.


2016 ◽  
Author(s):  
Amitosh Tiwari ◽  
Prashant Fartiyal ◽  
Neel Mani Sharma ◽  
Chandran Manickavasagam ◽  
Vaibhav Toshniwal ◽  
...  

2021 ◽  
Author(s):  
Sudad H Al-Obaidi ◽  
Smirnov VI ◽  
Khalaf FH

The article deals with theoretical and practical issues of improving the efficiency of operation of high-water cut oil wells by developing and applying double-acting pumping systems based on electric submersible pumps. This combination is providing down-hole gravitational separation of oil and produced water, lifting low-water-cut oil to the surface with simultaneous injection of most of the separated water into the absorbing formation without lifting to the surface. Moreover, it is providing low-cost regulation of the ratio of the volumes of the lifted product and the injected water, as well as monitoring the quality of the injected water with the required frequency.


2021 ◽  
Author(s):  
Ali Abdullah Al-Azmi ◽  
Thanyan Ahmed Al-Yaqout ◽  
Dalal Yousef Al-Jutaili ◽  
Kutbuddin Bhatia ◽  
Amr Abdelbaky ◽  
...  

Abstract Excessive water production from hydrocarbon reservoirs is a serious issue faced by the industry, particularly for mature fields. Higher water cut adversely affects the economics of the producing wells, thus it is undesirable. Disposal and reinjection of ever-increasing volumes of produced water poses additional liability. A significant challenge faced in the mature Umm Gudair field is assuring hydrocarbon flow through high water-prone intervals. In recent times, field development strategies have begun to prioritize new well intervention technology because of the advantages of minimized water cut, higher production rates, and improved overall reserve recovery (hydrocarbon in place). This paper discusses the field implementation of a downhole chemical methodology, "first of its kind" designed and applied, that has created a positive impact in overall productivity. To solve these challenges, the treatment was highly modified as fit-for-purpose to address the unique challenges of electric submersible pump (ESP)-driven well operations, formation technical difficulties, high-stakes economics, and high-water potential from these formations. A unique Organically Crosslinked Polymer (OCP) system with a tail-in Rigid Setting Material (RSM) system was implemented as a porosity-fill sealant in a high-water-cut well to selectively reduce water production. A pre-flush was pumped ahead of the treatment to remove deposits that could have prevented the polymer from effective gelation. The treatment was then overdisplaced with brine. The OCP system is injected into the formation as a low viscosity solution using the spot and hesitation squeeze method via bullheading. It activates at a predicted time to form a 3-D rigid hydrogel to completely shut off matrix permeability, fractures, fissures, and channels, thus creating an artificial barrier seal in the reservoir. The tail-in near wellbore RSM system rapidly develops a high compressive strength to avoid any formation loss before setting. This holistic approach helps to create a robust sealant for blocking the unwanted water-producing zone, impeding water flow, and facilitating increased hydrocarbon flow. A direct comparison of the application of this system with conventional cement squeeze treatments is presented to illustrate the advantage of having a deep matrix penetration for a more efficient water shutoff in this field. A direct result of the implemented treatment is that the post-operation well test and production data showed a high-sustained production at lower rate with significantly reduced watercut, confirming this technology is one of successful chemical water shut off techniques this field. This paper summarizes the candidate selection, design processes, challenges encountered, and production response, and can be considered a best practice for addressing high water production challenges in similar conditions in other fields.


2009 ◽  
Author(s):  
Daniel Daparo ◽  
Luis Soliz ◽  
Eduardo Roberto Perez ◽  
Carlos Iver Vidal Saravia ◽  
Philip Duke Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document