scholarly journals New Technologies to Improve the Performance of High Water Cut Wells Equipped With ESP

2021 ◽  
Author(s):  
Sudad H Al-Obaidi ◽  
Smirnov VI ◽  
Khalaf FH

The article deals with theoretical and practical issues of improving the efficiency of operation of high-water cut oil wells by developing and applying double-acting pumping systems based on electric submersible pumps. This combination is providing down-hole gravitational separation of oil and produced water, lifting low-water-cut oil to the surface with simultaneous injection of most of the separated water into the absorbing formation without lifting to the surface. Moreover, it is providing low-cost regulation of the ratio of the volumes of the lifted product and the injected water, as well as monitoring the quality of the injected water with the required frequency.

2009 ◽  
Author(s):  
Daniel Daparo ◽  
Luis Soliz ◽  
Eduardo Roberto Perez ◽  
Carlos Iver Vidal Saravia ◽  
Philip Duke Nguyen ◽  
...  

2017 ◽  
Author(s):  
Ibrahim Al-Hulail ◽  
Muzzammil Shakeel ◽  
Ahmed Binghanim ◽  
Mohamed Zeghouani ◽  
Raed Rahal ◽  
...  

2011 ◽  
Vol 14 (01) ◽  
pp. 120-128 ◽  
Author(s):  
Guanglun Lei ◽  
Lingling Li ◽  
Hisham A. Nasr-El-Din

Summary A common problem for oil production is excessive water production, which can lead to rapid productivity decline and significant increases in operating costs. The result is often a premature shut-in of wells because production has become uneconomical. In water injectors, the injection profiles are uneven and, as a result, large amounts of oil are left behind the water front. Many chemical systems have been used to control water production and improve recovery from reservoirs with high water cut. Inorganic gels have low viscosity and can be pumped using typical field mixing and injection equipment. Polymer or crosslinked gels, especially polyacrylamide-based systems, are mainly used because of their relatively low cost and their supposed selectivity. In this paper, microspheres (5–30 μm) were synthesized using acrylamide monomers crosslinked with an organic crosslinker. They can be suspended in water and can be pumped in sandstone formations. They can plug some of the pore throats and, thus, force injected water to change its direction and increase the sweep efficiency. A high-pressure/high-temperature (HP/HT) rheometer was used to measure G (elastic modulus) and G" (viscous modulus) of these aggregates. Experimental results indicate that these microspheres are stable in solutions with 20,000 ppm NaCl at 175°F. They can expand up to five times their original size in deionized water and show good elasticity. The results of sandpack tests show that the microspheres can flow through cores with permeability greater than 500 md and can increase the resistance factor by eight to 25 times and the residual resistance factor by nine times. The addition of microspheres to polymer solutions increased the resistance factor beyond that obtained with the polymer solution alone. Field data using microspheres showed significant improvements in the injection profile and enhancements in oil production.


Author(s):  
D. Daparo ◽  
L. Solis ◽  
E. Perez ◽  
C. Saravia ◽  
P.D. Nguyen ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. 1736-1749
Author(s):  
Jincai Wang ◽  
Zifei Fan ◽  
Lun Zhao ◽  
Li Chen ◽  
Jun Ni ◽  
...  

Abstract After a sandstone oilfield enters the high water-cut period, the viscosity of crude oil has an important influence on remaining oil distribution and waterflooding characteristics under the same factors of, e.g., reservoir quality and development methods. Based on a comprehensive interpretation of the waterflooded layers in new oil wells, physical simulation experiments, and reservoir numerical simulations, we analyzed the waterflooding laws of a high water-cut sandstone reservoir with different oil viscosities in Kazakhstan under the same oil production speed, and we clarified the remaining oil potential of reservoirs with different viscosities and proposed corresponding development measures. The results show that low-viscosity oil reservoirs (1 mPa s) have uniform waterflooding, thick streamlines, small waterflooding areas, and low overall waterflooding degrees because of their homogeneous oil–water viscosities. However, within waterflooded areas, the reservoirs have high oil displacement efficiencies and high waterflooding degrees, and the remaining oil is mainly concentrated in the unwaterflooded areas; therefore, the initial production and water cut in new oil wells vary significantly. High-viscosity oil reservoirs (200 mPa s) have severe waterflooding fingering, large waterflooding areas, and high overall waterflooded degrees because of their high oil–water mobility ratios. However, within waterflooded areas, the reservoirs have low oil displacement efficiencies and low waterflooding degrees, and the remaining oil is mainly concentrated in both the waterflooded areas and the unwaterflooded areas; therefore, the differences in the initial production and water cut of new oil wells are small. Moderate-viscosity oil reservoirs (20 mPa s) are characterized by remaining oil distributions that are somewhere in between those of the former two reservoirs. Therefore, in the high water-cut period, as the viscosity of crude oil increases, the efficiency of waterflooding gradually deteriorates and the remaining oil potential increases. In the later development, it is suggested to implement the local well pattern thickening in the remaining oil enrichment area for reservoirs with low viscosity, whereas a gradual overall well pattern thickening strategy is recommended for whole reservoirs with moderate and high viscosity. The findings of this study can aid better understanding of waterflooding law and the remaining oil potential of reservoirs with different viscosities and proposed corresponding development measures. The research results have important guidance and reference significance for the secondary development of high water-cut sandstone oilfields.


2021 ◽  
Vol 73 (09) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 200957, “Application of Specially Designed Polymers in High-Water-Cut Wells: A Holistic Well-Intervention Technology Applied in Umm Gudair Field, Kuwait,” by Ali Abdullah Al-Azmi, SPE, Thanyan Ahmed Al-Yaqout, and Dalal Yousef Al-Jutaili, Kuwait Oil Company, et al., prepared for the 2020 SPE Trinidad and Tobago Section Energy Resources Conference, originally scheduled to be held in Port of Spain, Trinidad and Tobago, 29 June–1 July. The paper has not been peer reviewed. A significant challenge faced in the mature Umm Gudair (UG) field is assurance of hydrocarbon flow through highly water-prone intervals. The complete paper discusses the field implementation of a downhole chemical methodology that has positively affected overall productivity. The treatment was highly modified to address the challenges of electrical-submersible-pump (ESP)-driven well operations, technical difficulties posed by the formation, high-stakes economics, and high water potential from these formations. Field Background and Challenge The UG field is one of the major oil fields in Kuwait (Fig. 1). The Minagish oolite (MO) reservoir is the main oil producer, contributing more than 95% of current production in the UG field. However, water cut has been increasing (approximately 65% at the time of writing). The increasing water cut in the reservoir is posing a major challenge to maintaining the oil-production rate because of the higher mobility of water compared with that of oil. The natural water aquifer support in the reservoir that underlies the oil column extends across the reservoir and is rising continuously. This has led to a decline in the oil-production rate and has prevented oil-producing zones from contributing effectively. The reservoir experiences water-coning phenomena, especially in high-permeability zones. Oil viscosity ranges from 2 to 8 cp, and hydrogen sulfide and carbon dioxide levels are 1.5 and 4%, respectively. During recent years, water production has increased rapidly in wells because of highly conductive, thick, clean carbonate formations with low structural dip as well as some stratified formations. Field production may be constrained by the capacity of the surface facilities; therefore, increased water production has different effects on field operations. The average cost of handling produced water is estimated to be between $5 billion and $10 billion in the US and approximately $40 billion globally. These volumes often are so large that even incremental modifications can have major financial effects. For example, the lift-ing cost of one barrel of oil doubles when water cut reaches 50%, increases fivefold at 80% water cut, and increases twenty-fold at 95% water cut.


Author(s):  
Jie Wang ◽  
Fujian Zhou ◽  
Lufeng Zhang ◽  
Fan Fan ◽  
Hong Yang

Water logging problem in late production reservoir with abundant edge-bottom water and water-gas layer stagger is one of the main factors that lead to production wells stop flow. For the water plugging problem during gas well production, the common operation is coiled tubing through casing. So, coiled tubing technology without moving production string is explored. X oilfield is located in Sichuan basin of China southwest and belongs to the origin of gas pipeline from Sichuan to China east. Its main gas producing area is carbonatite full of edge water and controlled by structural and lithology. The relationship between water and gas is complex and water-gas system is independent of different blocks and different layers. Because the main gas producing layer is close to the water layer, lots of gas producing wells stop spray for high water cut. At the meantime, the difficulty and risk of water plugging increases for its high depth of main gas producing layer and high temperature at the well bottom. To solve the problem above, cement slurry system with the characteristics of high temperature and sulfur resistant and channeling preventing is developed. At the same time, the cement slurry system has low friction and high liquidity and is easy to flow through the coiled tubing. Besides, cement slurry pollution is reduced and the success rate of gas well produced water plugging is improved by the combination of coiled tubing and cementing process and the construction technology optimization, software simulation and laboratory evaluation is carried out. The key step is that log analysis of water and gas distribution is done first. Then, tubing-expansion bridge plug is placed under the water layer and the cement slurry is sent to the desired location. At last, coiled tubing is put down after cement solidification and gas production is recovered. The measurement of coiled tubing and cement slurry system is positive for water plugging in gas wells with high depth and temperature. The oilfield test results show that daily gas production is improved largely and liquid production is reduced by 90% of 4 wells with high water cut through water plugging. Besides, operation cost is reduced and the pollution problem caused by produced water is also solved, which can provide certain significance for the same type wells need water plugging operation.


Sign in / Sign up

Export Citation Format

Share Document