A Theoretical Study of Acid-Fracture Conductivity Under Closure Stress

2011 ◽  
Vol 26 (01) ◽  
pp. 9-17 ◽  
Author(s):  
Jiayao Deng ◽  
Alfred D. Hill ◽  
Ding Zhu
2014 ◽  
Vol 1042 ◽  
pp. 44-51
Author(s):  
Jia Nye Mou ◽  
Mao Tang Yao ◽  
Ke Xiang Zheng

Acid fracture conductivity is a key parameter in acid fracturing designs and production performance prediction. It depends on the fracture surface etching pattern, rock mechanical properties, and closure stress. The fracture surfaces undergo creep deformation under closure stress during production. Preservation of fracture conductivity becomes a challenge at elevated closure stress. In this paper, we investigated acid fracture conductivity behavior of Tahe deep carbonate reservoir with high closure stress and high temperature. A series of acid fracture conductivity experiment was conducted in a laboratory facility designed to perform acid fracture conductivity. Gelled acid and cross linked acid with different acid-rock contact times were tested for analyzing the effect of acid type and acid-rock contact time on the resulting conductivity. Closure stress up to 100MPa was tested to verify the feasibility of acid fracturing for elevated closure stress. Long-term conductivity up to 7-day was tested to determine the capability of conductivity retaining after creep deformation. Composite conductivity of acid fracture with prop pant was also carried out. The study shows that the fracture retained enough conductivity even under effective closure stress of 70MPa. The gelled acid has a much higher conductivity than the cross linked acid for the same contact time. For the gelled acid, contact time above 60-minute does not lead to conductivity increase. Acid fracture with prop pant has a lower conductivity at low closure stress and a higher conductivity at high closure stress than the acid fracture, which shows composite conductivity is a feasible way to raise conductivity at high closure stress. The long-term conductivity tests show that the acid fracture conductivity decreases fast within the first 48-hour and then levels off. The conductivity keeps stable after 120-hour. An acid fracture conductivity correlation was also developed for this reservoir.


1985 ◽  
Vol 25 (02) ◽  
pp. 157-170 ◽  
Author(s):  
R.A. Cutler ◽  
D.O. Enniss ◽  
A.H. Jones ◽  
S.R. Swanson

Abstract Lightweight, intermediate-strength proppants have been developed that are intermediate in cost between sand and bauxite. A wide variety of proppant materials is characterized and compared in a laboratory fracture conductivity study. Consistent sample preparation, test, and data reduction procedures were practiced, which allow a relative comparison of the conductivity of various proppants at intermediate and high stresses. Specific gravity, proppants at intermediate and high stresses. Specific gravity, corrosion resistance, and crush resistance of each proppant also were determined. proppant also were determined. Fracture conductivity was measured to a laminar flow of deaerated, deionized water over a closure stress range of 6.9 to 96.5 MPa [1,000 to 14,000 psi] in 6.9-MPa [1,000-psi] increments. Testing was performed at a constant 50 degrees C [122 degrees F] temperature. Results of the testing are compared with values from the literature and analyzed to determine proppant acceptability in the intermediate and high closure stress regions. Fracture strengths for porous and solid proppants agree well with calculated values. Several oxide ceramics were found to have acceptable conductivity at closure stresses to 96.5 MPa [14,000 psi]. Resin-coated proppants have lower conductivities than uncoated, intermediate-strength oxide proppants when similar size distributions are tested. Recommendations are made for obtaining valid conductivity data for use in proppant selection and economic analyses. proppant selection and economic analyses. Introduction Massive hydraulic fracturing (MHF) is used to increase the productivity of gas wells in low-permeability reservoirs by creating deeply penetrating fractures in the producing formation surrounding the well. Traditionally, producing formation surrounding the well. Traditionally, high-purity silica sand has been pumped into the created fracture to prop it open and maintain gas permeability after completing the stimulation. The relatively low cost, abundance, sphericity, and low specific gravity of high-quality sands (e.g., Jordan, St. Peters, and Brady formation silica sands) have made sand a good proppant for most hydraulic fracturing treatments. The closure stress on the proppants increases with depth, and even for selected high-quality sands the fracture conductivity has been found to deteriorate rapidly when closure stresses exceed approximately 48 MPa [7,000 psi]. Several higher-strength proppants have been developed to withstand the increased closure stress of deeper wells. Sintered bauxite, fused zirconia, and resin-coated sands have been the most successful higher-strength proppants introduced. These proppants have improved proppants introduced. These proppants have improved crush resistance and have been used successfully in MHF treatments. The higher cost of these materials as compared to sand has been the largest single factor inhibiting their widespread use. The higher specific gravity of bauxite and zirconia proppants not only increases the volume cost differential compared to sand but also enhances proppant settling. Lower-specific-gravity proppants not only are more cost effective but also have the potential to improve proppant transport. Novotny showed the effect of proppant diameter on settling velocity in non-Newtonian fluids and concluded that proppant settling may determine the success or failure of a hydraulic fracturing treatment. By using the same proppant settling equation as Novotny, the settling velocity of 20/40 mesh proppants is calculated for four different specific gravities and shown as a function of fluid shear rate in Fig. 1. The specific gravity of bauxite is 3.65 and sand is 2.65; therefore, bauxite is 37.7 % more dense than sand. The settling velocity for bauxite, as shown in Fig. 1, however, is approximately 65 % higher than sand. Work on proppants with specific gravities lower than bauxite was initiated to improve the transport characteristics of the proppant during placement. It has been demonstrated that vertical propagation of the fracture can be limited by reducing the fracturing fluid pressure. The viscosity range of existing fracturing pressure. The viscosity range of existing fracturing fluids makes minimizing fluid viscosity a much more effective method of controlling pressure than lowering the pumping rate. A potential advantage of decreasing the pumping rate. A potential advantage of decreasing the specific gravity of the proppant is that identical proppant transport to that currently achievable can take place in lower-viscosity fluids. (Alternatively, higher volumes of proppant can be pumped in a given amount of a proppant can be pumped in a given amount of a high-viscosity fracturing fluid.) Not only are low-viscosity fluids capable of allowing better fracture control, they are also less expensive. More importantly, it recently was shown that the conductivity of a created hydraulic fracture in the Wamsutter area is about one-tenth of that predicted by laboratory conductivity tests. P. 157


2017 ◽  
Vol 37 ◽  
pp. 449-461 ◽  
Author(s):  
Tengfei Hou ◽  
Shicheng Zhang ◽  
Xinfang Ma ◽  
Junjie Shao ◽  
Yunan He ◽  
...  

2015 ◽  
Author(s):  
Weiwei Wu ◽  
Mukul M. Sharma

Abstract Many microfractures created during hydraulic fracturing are too small to be filled with proppants and are likely closed during production. However, for some shales that are rich in calcite (calcareous mudstones), such as the Bakken and Eagle Ford shale, dilute acids can be used while fracturing to maintain the conductivity of these microfractures under closure stress by non-uniformly etching the fracture surfaces. The mineralogy and pore structure of the shale and their evolution during acid fracturing are critical factors on the surface surface etching profile and the fluid leakoff. Therefore, understanding how acid dissolution changes the microstructure, petrophysical properties and pore structures of shale is essential in the design and application of acid fracturing in shales. In this paper changes in shale properties and pore structure by acid fracturing were demonstrated and visually observed for the first time with a scanning electron microscope. Acidized sections of a shale core sample were carefully isolated, and its microstructure, pore structure and petrophysical properties were systematically studied and compared with non-acidized sections of the core. Microstructure changes were found to be strongly dependent on mineral distribution, and several patterns were identified: channels developed in carbonate-rich regions; cavities or grooves formed in carbonate-rich islands or carbonate rings; and surface roughness was created in mixed zones of scattered carbonate and inert minerals. Inert minerals such as clay, organic matter stay relatively undisturbed in the structure, while some mineral grains can be dislodged from their original locations by dissolution of the surrounding carbonates. Many macropores with size up to 120 µm were created and mesopores mostly associated with clay gained more accessibility. Significantly increased permeability and porosity was measured in an acidized shale matrix. Brinell hardness measurements show that, as expected, the hardness of the shale was reduced by acidizing. This means that for acidizing to work effectively, it is important to not etch the fracture surfaces uniformly. Doing so will result in a reduction in the fracture conductivity under stress. The microstructure changes introduced by acid fracturing demonstrated in this study will result in the formation of surface asperities which is likely to improve the fracture conductivity of induced unpropped fractures. The acidized shale matrix close to the fracture surface with increased abundance of macropores and accessibility to mesopores may serve as a preferred pathway for fluid flow as well.


2021 ◽  
Author(s):  
Yanli Pei ◽  
Kamy Sepehrnoori

Abstract The change of fracture conductivity during reservoir depletion significantly affects the well performance and stress evolution in unconventional formations. A common practice is to model fracture deformation using the traditional finite element method with very dense unstructured grids representing complex fracture geometries. However, the associated computational cost is high, so previous studies mainly use empirical correlations to catch the fracture conductivity loss or neglect fracture deformation during the production period. This work proposes a novel coupled flow and geomechanics model with embedded fracture methods to capture the fracture deformation accurately yet efficiently in unconventional reservoirs. Under a single set of structured grids, an embedded discrete fracture model (EDFM) is employed to characterize fluid flow through discrete fractures by introducing non-neighboring connections, and an extended finite element method (XFEM) is applied to simulate discontinuities over fracture walls by adding phantom nodes. In addition, a modified proppant model is incorporated to represent interactions between proppants and hydraulic surfaces, and an iterative coupling scheme is implemented to link the fracture-related fluid flow and solid mechanics. Being validated against the classical benchmark problem, the coupled model is used to investigate the impacts of proppant strength, closure stress, and bottomhole pressure on fracture deformation, well production, and in-situ stresses. Numerical results indicate that weaker proppant support induces more fracture aperture and production losses, resulting in greater stress changes and higher residual pressure in the depletion region. In comparison, the fracture deformation for a well-propped scenario is modest and barely affects the well performance and stress redistribution. Less stressed formation corresponds to lower closure stress on fracture walls, which triggers limited fracture closure and stabilizes well production. Moreover, a moderate bottomhole pressure decline rate avoids significant fracture closure while preserves relatively high initial production rates. The coupled flow and geomechanics model with embedded fracture methods resolves computational difficulties in modeling complex fracture deformations and delivers more insights on production forecast and stress changes crucial to refracturing and infill operations.


2011 ◽  
Author(s):  
Jiayao Deng ◽  
Jianye Mou ◽  
Alfred Daniel Hill ◽  
Ding Zhu

2012 ◽  
Vol 27 (02) ◽  
pp. 158-169 ◽  
Author(s):  
Jiayao Deng ◽  
Jianye Mou ◽  
Alfred D. Hill ◽  
Ding Zhu

SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1288-1308 ◽  
Author(s):  
Haiyan Zhu ◽  
Ya-Pu Zhao ◽  
Yongcun Feng ◽  
Haowei Wang ◽  
Liaoyuan Zhang ◽  
...  

Summary Channel fracturing acknowledges that there will be local concentrations of proppant that generate high-conductivity channel networks within a hydraulic fracture. These concentrations of proppant form pillars that maintain aperture. The mechanical properties of these proppant pillars and the reservoir rock are important factors affecting conductivity. In this paper, the nonlinear stress/strain relationship of proppant pillars is first determined using experimental results. A predictive model for fracture width and conductivity is developed when unpropped, highly conductive channels are generated during the stimulation. This model considers the combined effects of pillar and fracture-surface deformation, as well as proppant embedment. The influence of the geomechanical parameters related to the formation and the operational parameters of the stimulation are analyzed using the proposed model. The results of this work indicate the following: Proppant pillars clearly exhibit compaction in response to applied closure stress, and the resulting axial and radial deformation should not be ignored in the prediction of fracture conductivity. There is an optimal ratio (approximately 0.6 to 0.7) of pillar diameter to pillar distance that results in a maximum hydraulic conductivity regardless of pillar diameter. The critical ratio of rock modulus to closure stress currently used in the industry to evaluate the applicability of a channel-fracturing technique is quite conservative. The operational parameters of fracturing jobs should also be considered in the evaluation.


Sign in / Sign up

Export Citation Format

Share Document