A Crosslinkable Synthetic Polymer System for High-Temperature Hydraulic Fracturing Applications

Author(s):  
Jeremy Holtsclaw ◽  
Gary P. Funkhouser
2021 ◽  
pp. 52-62
Author(s):  
V. P. Ovchinnikov ◽  
O. V. Rozhkova ◽  
S. N. Bastrikov ◽  
D. S. Leontiev ◽  
P. V. Ovchinnikov

The article discusses the main technological processes of well construction for the production of high-viscosity hydrocarbons from productive lowporosity reservoirs with high temperature and pressure conditions, which include shale deposits of Bazhenov formation. According to the results of the review and analysis of existing solutions in the development of this deposits, the following measures were justified and proposed: construction of branched multi-hole azimuth horizontal wells, implementation of selective multi-stage hydraulic fracturing in the productive formation; the use of oil-based process fluids when opening the reservoir, the use of plugging materials for isolation of the reservoir, the hardening product of which is represented by thermally stable hydrate phases (hydrobasic hydrosilicates). Вranched wells have a long horizontal end (about 1 000 meters or more). Only a part of the horizontal section works effectively, which is the basis for the development and application of the staged, both in time and along the strike, hydraulic fracturing method. At the level of the invention, a method and apparatus for carrying out multistage selective hydraulic fracturing in wells with horizontal completion have been developed. The article describes a method for implementing multistage selective hydraulic fracturing, comparing this method with the existing ones. Much attention is given to the need to use hydrocarbon-based solutions for the initial opening the reservoir, to use cement slurries from composite materials to separate the reservoir, the hardening product of which is a stone formed by low-basic calcium hydrosilicate.


2021 ◽  
Author(s):  
Joseph Ferrar ◽  
Philip Maun ◽  
Kenneth Wunch ◽  
Joseph Moore ◽  
Jana Rajan ◽  
...  

Abstract We report the design, operation and biogenic souring data from a first-of-its kind suite of High Pressure, High Temperature (HPHT) Bioreactors for hydraulically fractured shale reservoirs. These bioreactors vet the ability of microbial control technologies, such as biocides, to prevent the onset of microbial contamination and reservoir souring at larger experimental volumes and higher pressures and temperatures than have been previously possible outside of field trials. The bioreactors were charged with proppant, crushed Permian shale, and sterile simulated fracturing fluids (SSFF). Subsets of bioreactors were charged with SSFF dosed with either no biocide, tributyl tetradecyl phosphonium chloride (TTPC, a cationic surface-active biocide), or 4,4-dimethyloxazolidine (DMO, a preservative biocide). The bioreactors were shut in under 1,000-2,500 psi and elevated temperatures for up to fifteen weeks; hydrogen sulfide (H2S) and microbial counts were measured approximately once per week, and additional microbes were introduced after weeks three and five. Across two separate studies, the bioreactors containing no biocide soured within the first week of shut-in and H2S concentrations increased rapidly beyond the maximum detectable level (343 ppm) within the first three to six weeks of shut-in. In the first study, the bioreactors treated with TTPC soured within two weeks of shut-in (prior to the first addition of fresh microbes), and H2S concentrations increased rapidly to nearly 200 ppm H2S within the first six weeks of shut-in and beyond the maximum detectable level after fifteen weeks of shut-in. The bioreactors containing DMO did not sour during either study until at least the first addition of fresh microbes, and higher levels of the preservative biocide continued to prevent the biogenic formation of H2S even during and after the addition of fresh microbes. Microbial counts correlate with the H2S readings across all bioreactor treatments. The differentiation in antimicrobial activity afforded by the different types of biocide treatments validates the use of these simulated laboratory reservoirs as a biocide selection tool. This first-of-its-kind suite of HPHT Bioreactors for hydraulic fracturing provides the most advanced biocide selection tool developed for the hydraulic fracturing industry to date. The bioreactors will guide completions and stimulation engineers in biocide program optimization under reservoir-relevant conditions prior to beginning lengthy and expensive field trials.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3171
Author(s):  
Liangliang Guo ◽  
Zihong Wang ◽  
Yanjun Zhang ◽  
Zhichao Wang ◽  
Haiyang Jiang

In order to study the mechanism of hydraulic fracturing in enhanced geothermal systems, we analyzed the influence of high temperatures and embedded fractures on the initiation and propagation of hydraulic fractures using a laboratory test and numerical simulation. The analysis was conducted via large-scale true triaxial hydraulic fracturing tests with acoustic emission monitoring. Moreover, we discussed and established the elastic-plastic criterion of hydraulic fracturing initiation. The corresponding fracturing procedure was designed and embedded into the FLAC3D software. Then, a numerical simulation was conducted and compared with the laboratory test to verify the accuracy of the fracturing procedure. The influence of high temperatures on hydraulic fracturing presented the following features. First, multi-fractures were created, especially in the near-well region. Second, fracturing pressure, extension pressure, and fracture flow resistance became larger than those at room temperature. 3D acoustic fracturing emission results indicated that the influence of the spatial distribution pattern of embedded fractures on hydraulic fracturing direction was larger than that of triaxial stress. Furthermore, the fracturing and extension pressures decreased with the increase of embedded fracture density. For hydraulic fracturing in a high temperature reservoir, a plastic zone was generated near the borehole, and this zone increased as the injection pressure increased until the well wall failed.


2013 ◽  
Vol 46 (11) ◽  
pp. 4370-4377 ◽  
Author(s):  
Kerry Drake ◽  
Indraneil Mukherjee ◽  
Khalid Mirza ◽  
Hai-Feng Ji ◽  
Jean-Claude Bradley ◽  
...  

2014 ◽  
Vol 17 (6) ◽  
pp. 1269-1269 ◽  
Author(s):  
Muhammad Shahzad Kamal ◽  
Abdullah Saad Sultan ◽  
Usamah A. Al-Mubaiyedh ◽  
Ibnelwaleed A. Hussein ◽  
Martial Pabon

Sign in / Sign up

Export Citation Format

Share Document