Application Of Super High Density Drilling Fluid Under Ultra-High Temperature On Well Shengke-1

Author(s):  
Xue Yuzhi ◽  
Li Gongrang ◽  
Liu Baofeng ◽  
Jinghui Zhang
2014 ◽  
Author(s):  
Kerati Charnvit ◽  
Fransiskus Huadi ◽  
Chakkrawut Promkhote ◽  
Catalin Aldea ◽  
David Power ◽  
...  

2012 ◽  
Vol 524-527 ◽  
pp. 1382-1388
Author(s):  
Ping Quan Wang ◽  
Yang Bai ◽  
Gang Peng ◽  
Zhi Wei Qian

Due to the high temperature , great pressure and complex lithology of super-deep well bottom, there exist such problems such as high solid concentration, multiple but inaccurate treating chemicals, complex formulation with instability of drilling fluid system, resulting in a frequent occurrence of underground complex accident and a waste of a lot of manpower and material resources. Therefore, based on the analysis of performance factors of ultra-deep drilling fluid system, the approach of regulating water based drilling fluid properties of super-deep well has been found. Moreover, through screening and processing optimization of treating chemicals of ultra-deep well by single-factor method, three sets of anti-high-density and anti-high-temperature saturated brine drilling fluid systems with few kinds of treating chemicals, concise and simplified system, including: ① saturated brine drilling fluid with anti-temperature 180 °C and density 2.40 g/cm3 ; ② saturated brine drilling fluid with anti-temperature 200 °C and density 2.40g/cm3; ③ saturated brine drilling fluid with anti-temperature 220 °C and density 2.40g/cm3 . After the the evaluation of the overall performance of these three systems under respective experimental conditions, the results show that all of these systems have such advantages as good and strong rheology, water loss building capacity, inhibition, lubricity and blocking ability, etc, which could meet the requirements of ultra-deep drilling under different circumstances.


2013 ◽  
Author(s):  
Kay A. Galindo ◽  
Jay Paul Deville ◽  
Bernard Jean-Luc Espagne ◽  
David Pasquier ◽  
Isabelle Henaut ◽  
...  

Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 76
Author(s):  
Delong Zhang ◽  
Yu Wang ◽  
Junjie Sha ◽  
Yuguang He

High-temperature geothermal well resource exploration faces high-temperature and high-pressure environments at the bottom of the hole. The all-metal turbodrill has the advantages of high-temperature resistance and corrosion resistance and has good application prospects. Multistage hydraulic components, consisting of stators and rotors, are the key to the turbodrill. The purpose of this paper is to provide a basis for designing turbodrill blades with high-density drilling fluid under high-temperature conditions. Based on the basic equation of pseudo-fluid two-phase flow and the modified Bernoulli equation, a mathematical model for the coupling of two-phase viscous fluid flow with the turbodrill blade is established. A single-stage blade performance prediction model is proposed and extended to multi-stage blades. A Computational Fluid Dynamics (CFD) model of a 100-stage turbodrill blade channel is established, and the multi-stage blade simulation results for different fluid properties are given. The analysis confirms the influence of fluid viscosity and fluid density on the output performance of the turbodrill. The research results show that compared with the condition of clear water, the high-viscosity and high-density conditions (viscosity 16 mPa∙s, density 1.4 g/cm3) will increase the braking torque of the turbodrill by 24.2%, the peak power by 19.8%, and the pressure drop by 52.1%. The results will be beneficial to the modification of the geometry model of the blade and guide the on-site application of the turbodrill to improve drilling efficiency.


2021 ◽  
Author(s):  
Wenxi Zhu ◽  
Xiuhua Zheng

Colloidal gas aphron (CGA) drilling fluids are a kind of environmentally-friendly underbalanced drilling technique, which has attracted more attention in depleted reservoirs and other low-pressure areas. With the shortage of global oil/gas resources, drilling has gradually shifted to high-temperature and deep wells. Hence, a study on the ultra-high temperature rheology properties of CGA fluids is lacking and urgently needed. In this study, a novel CGA drilling fluid system was prepared by modified starch and amino acid surfactant, and rheological properties after 120-300°C aged was investigate. Results show that: (1) Herschel-Bulkley model is the preferred model to predict CGA drilling fluid at ultra-high temperatures; (2) It was proved that CGA drilling fluid is a high-quality drilling fluid with extremely high value of LSRV and shear thinning property within 280°C. Compared to the traditional XG-based CGA drilling fluid, the improvement of LSRV at ultra-high temperatures is a significant advantage of EST-based CGA drilling fluid which is conducive to carrying cuttings and sealing formation pores.


Sign in / Sign up

Export Citation Format

Share Document