Study and Application of Anionic and Cationic Polymers Alternative Injection for In-depth Profile Control in Low Permeability Sandstone Reservoir

Author(s):  
Li Cai Dai ◽  
Qing You ◽  
Xiqun Fan
2020 ◽  
Vol 194 ◽  
pp. 107529 ◽  
Author(s):  
Junjian Li ◽  
Ze Wang ◽  
Hanxu Yang ◽  
Hai'en Yang ◽  
Tianjiang Wu ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fajun Zhao ◽  
Hongbao Zhang ◽  
Yanping Wu ◽  
Dawei Wang ◽  
Yufei Zhang

To improve in-depth profile control in a low-permeability reservoir, polymeric microspheres were used. A distillation–precipitation polymerization method was adopted to prepare nanometer-sized polymeric microspheres, whose structure, apparent pattern, thermal endurance, particle size, hydration, and swelling capacity were tested and analyzed by a series of techniques, including infrared spectroscopy, scanning electron microscopy, thermogravimetry, high-pressure and high-temperature rheometry, and dynamic light scattering. The prepared polymeric microspheres were copolymerization products of acrylamide, acrylic acid, and methyl methacrylate that were uniformly round with a centralized size distribution. The nanometer-sized microspheres had satisfactory hydration/swelling performance, indicating that they could act as oil displacement profile control agents. With the increase of shear rate, the apparent viscosity of the polymeric microspheres was significantly reduced, and the fluid possessed a pseudoplastic behavior. When the shear rate was 100–1000 s−1, the fluid demonstrated a Newtonian fluid behavior. After the polymeric microspheres were hydrated, the particle size distribution curve shows a normal distribution, reaching a maximum swelling size of 21.3 times that of the original microspheres. The plugging performance and deformability of the polymeric microspheres gradually enhanced with swelling time, which makes the microspheres effective pore channel plugging agents for delivering a better in-depth profile control effect in rock cores with lower permeability. The core flooding test showed that, for the heterogeneous core with a permeability of 10 μm2, polymer microspheres have good plugging effect.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Daiyin Yin ◽  
Wei Zhou

When fractured low-permeability reservoirs enter a high water cut period, injected water always flows along fractures, water cut speeds increase rapidly, and oil production decreases quickly in oil wells. It is difficult to further improve the oil recovery of such fractured low-permeability reservoirs. In this paper, based on the advantages of in-depth profile control and cyclic water injection, the feasibility of combining deep profile control with cyclic water injection to improve oil recovery in fractured low-permeability reservoirs during the high water cut stage was studied, and the mechanisms of in-depth profile control and cyclic waterflooding were investigated. According to the characteristics of reservoirs in Zone X, as well as the fracture features and evolution mechanisms of the well network, an outcrop plate fractured core model that considers fracture direction was developed, and core displacement experiments were carried out by using the HPAM/Cr3+ gel in-depth profile control system. The enhanced oil recovery of waterflooding, cyclic water injection, and in-depth profile control, as well as a combination of in-depth profile control and cyclic water injection, was investigated. Moreover, variations in the water cut degree, reserve recovery percentage, injection pressure, fracture and matrix pressure, and water saturation were monitored. On this basis, the mechanism of enhanced oil recovery based on the combined utilization of in-depth profile control and cyclic waterflooding methods was analyzed. The results show that in-depth profile control and cyclic water injection can be synchronized to further increase oil recovery. The recovery ratio under the combination of in-depth profile control and cyclic water injection was 1.9% higher than that under the in-depth profile control and 5.6% higher than that under cyclic water injection. The combination of in-depth profile control and cyclic water injection can increase the reservoir pressure; therefore, the fluctuation of pressure between the matrix and its fractures increases, more crude oil flows into the fracture, and the oil production increases.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 453
Author(s):  
Wenhuan Li ◽  
Tailiang Fan ◽  
Zhiqian Gao ◽  
Zhixiong Wu ◽  
Ya’nan Li ◽  
...  

The Lower Jurassic reservoir in the Niudong area of the northern margin of Qaidam Basin is a typical low permeability sandstone reservoir and an important target for oil and gas exploration in the northern margin of the Qaidam Basin. In this paper, casting thin section analysis, scanning electron microscopy, X-ray diffraction, and stable isotope analysis among other methods were used to identify the diagenetic characteristics and evolution as well as the main factors influencing reservoir quality in the study area. The predominant types of sandstone in the study area are mainly feldspathic lithic sandstone and lithic arkose, followed by feldspathic sandstone and lithic sandstone. Reservoir porosity ranges from 0.01% to 19.5% (average of 9.9%), and permeability ranges from 0.01 to 32.4 mD (average of 3.8 mD). The reservoir exhibits robust heterogeneity and its quality is mainly influenced by diagenesis. The Lower Jurassic reservoir in the study area has undergone complex diagenesis and reached the middle diagenesis stage (A–B). The quantitative analysis of pore evolution showed that the porosity loss rate caused by compaction and cementation was 69.0% and 25.7% on average, and the porosity increase via dissolution was 4.8% on average. Compaction was the main cause of the reduction in the physical property of the reservoir in the study area, while cementation and dissolution were the main causes of reservoir heterogeneity. Cementation can reduce reservoir space by filling primary intergranular pores and secondary dissolved pores via cementation such as a calcite and illite/smectite mixed layer, whereas high cement content increased the compaction resistance of particles to preserve certain primary pores. δ13C and δ18O isotopes showed that the carbonate cement in the study area was the product of hydrocarbon generation by organic matter. The study area has conditions that are conductive to strong dissolution and mainly occur in feldspar dissolution, which produces a large number of secondary pores. It is important to improve the physical properties of the reservoir. Structurally, the Niudong area is a large nose uplift structure with developed fractures, which can be used as an effective oil and gas reservoir space and migration channel. In addition, the existence of fractures provides favorable conditions for the uninterrupted entry of acid fluid into the reservoir, promoting the occurrence of dissolution, and ultimately improves the physical properties of reservoirs, which is mainly manifested in improving the reservoir permeability.


Sign in / Sign up

Export Citation Format

Share Document