pore evolution
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 75)

H-INDEX

17
(FIVE YEARS 5)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 470
Author(s):  
Yue Zhang ◽  
Jingchun Tian ◽  
Xiang Zhang ◽  
Jian Li ◽  
Qingshao Liang ◽  
...  

Diagenesis and pore evolution of tight sandstone reservoir is one of the most important issues surrounding clastic reservoirs. The tight sandstone of the Shanxi Formation is an important oil and gas producing layer of the Upper Paleozoic in Ordos Basin, and its densification process has an important impact on reservoir quality. This study determined the physical properties and diagenetic evolution of Shanxi Formation sandstones and quantitatively calculated the pore loss in the diagenetic process. Microscopic identification, cathodoluminescence, and a scanning electron microscope were used identify diagenesis, and the diagenesis evolution process was clarified along with inclusion analysis. In addition, reservoir quality was determined based on the identification of pore types and physical porosity. Results show that rock types are mainly sublitharenite and litharenite. The reservoir has numerous secondary pores after experiencing compaction, cementation, and dissolution. We obtained insight into the relationship between homogenous temperature and two hydrocarbon charges. The results indicated that there were two hydrocarbon charges in the Late Triassic–Early Jurassic (70–90 °C) and Middle Jurassic–Early Cretaceous (110–130 °C) before reservoir densification. The quantitative calculation of pore loss shows that the average apparent compaction, cementation, and dissolution rates are 67.36%, 22.24%, and 80.76%, respectively. Compaction directly affected the reservoir tightness, and intense dissolution was beneficial to improve the physical properties of the reservoir.


Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121565
Author(s):  
Shaotao Xu ◽  
Youhong Sun ◽  
Xiaoshu Lü ◽  
Qinchuan Yang ◽  
Qiang Li ◽  
...  

Author(s):  
Gao Zhanwu ◽  
Shi Jian ◽  
Xie Qichao ◽  
Zhou Yan ◽  
Zhou Shuxun

AbstractTight sandstone reservoirs dominated by are developed in the Chang 6 oil layer group of the Yanchang Formation in the central-western part of the Ordos Basin. Featuring the lacustrine delta facies, Chang 6 formation in the center-west area of Ordos Basin shows an increasing petroleum reserve expectation. Its exploitation practice, however, has many problems caused by tight sandstone reservoir features. According to diagenetic and pore analysis, the diagenetic facies in the study area are grouped into four types: chlorite-film-intergranular-pore, feldspar-dissolution, clay-cemented-micropore, carbonate-cemented-tightness for their obvious differences in mineral feature and pore evolution. By introducing the comprehensive classification parameter synthesized from 9 other parameters, the reservoir quality is divided up into four levels: I(Feci > 1), II(3 ≤ Feci ≤ 7), III(-2 ≤ Feci ≤ 3), IV(Feci ≤ -2). The reservoir quality division matches well with the diagenetic facies group. To decide the diagenetic type and reservoir quality division in all wells, the logging data are utilized with the Fisher discriminant method, which has obtained a good performance. The method enables the reservoir quality analysis expanding to all wells from samples, which is helpful for exploitation of the study area.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ke Man ◽  
Zongxu Liu ◽  
Zhifei Song ◽  
Xiaoli Liu

Based on the sandstone from the slope of Baorixile open-pit mining area in Hulunbuir City, Inner Mongolia, the dynamic uniaxial compression test of sandstone with different freeze-thaw cycles has been carried out by Split Hopkinson Pressure Bar test (SHPB). The test results show that the crushing degree of sandstone becomes serious with the freeze-thaw cycle times and strain rate increases. The dynamic compressive strength increases with the raise of strain rate under the same freeze-thaw cycles, while it reduces with the increases of freeze-thaw cycles at the same strain rate. It is found that the 10 freeze-thaw cycles are an obvious inflection point. When it is less than 10 cycles, the dynamic compressive strength of sandstone specimens decreases rapidly, it is more than 10 cycles, and the strength decreases gradually. This is due to that the evolution progress of pores in sandstone is more uniform after a certain number of freeze-thaw cycles. Meantime, the effect of freezing and thawing is mostly restrained by the pore evolution. On the other hand, the dissipated energy required for sandstone failure grows up with the increase of the number of freeze-thaw cycles. It shows that more energy is needed for the engender of pores and fractures in sandstone caused by freeze-thaw cycle. This led to the deterioration of sandstone structural stability and the decrease of dynamic mechanical properties.


2021 ◽  
pp. 014459872110493
Author(s):  
Baobao Wang ◽  
Xiucheng Tan ◽  
Wenjie Su ◽  
Wei Yan ◽  
Di Xiao ◽  
...  

In gypsum–carbonate rock assemblages, multistage and complex fluids control the formation of dolomite reservoirs that are a focus of hydrocarbon exploration. It is difficult to determine the types of dolomite reservoirs and their formation mechanisms due to the diverse rock assemblages and multiple stages of diagenesis. In this study, we investigated the petrology, reservoir physical properties, and geochemistry of the 6th sub-member of member five of the Majiagou Formation (i.e. Ma56) in the Ordos Basin, China. These data were used to determine the nature and types of gypsum–carbonate rocks, and constrain their reservoir characteristics and diagenetic history, and fluid-related mechanisms that led to dolomite reservoir development and preservation. The Ma56 was deposited on a restricted evaporatic platform in the North China Craton, and contains three main types of dolomite reservoirs with variable types of reservoir space. Dolomite reservoir formation was closely related to penecontemporaneous dolomitization, karstification, and differential cementation. Early large-scale dolomitization produced dolomitized carbonate sediments that were resistant to compaction and dissolution, which was conducive to the preservation of primary and secondary pores. The intermittent exposure and dissolution of mound–shoal facies sediments, due to high-frequency sea-level fluctuations, was the dominant mechanism for formation of secondary dissolved pores and high-quality reservoirs. During burial, differential cementation occurred due to interaction between fluids and pore size, which determined the extent of reservoir preservation. In general, the studied dolomite reservoirs have undergone multistage diagenesis and alteration, which led to complex and multistage development of the reservoir porosity. However, the reservoir lithology and pore space developed mostly in the depositional to penecontemporaneous stages. Our results provide new insights into the origins of deeply buried dolomite reservoirs in carbonate–evaporite successions.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Huifang Hu ◽  
Yang Ju ◽  
Chenyang Zhao ◽  
Miaozhi Jing ◽  
Liang Sun ◽  
...  

Whether oil emplacement and diagenetic sequences provoke, deteriorate, or have no effect on pore network evolution, as implied by recent tests and theoretical analysis, are critical factors in forecasting hydrocarbon exploration and development potentials. Therefore, a systematic investigation on the effect of oil emplacement of tight sandstones is conducted to study the importance of this behavior on the pore evolution path. This study evaluated the role played by oil emplacement and diagenesis in the pore network evolution of Upper Triassic tight sandstones in the Ordos Basin. To help provide a comprehensive understanding, we have used a multidisciplinary method including physical properties, casting thin section, scanning electron microscope, X-ray diffraction, fluorometric, and inclusion analysis. The results demonstrate that the sandstones could be divided into four groups based on new criteria: calcareous sandstone, high soft component sandstone, low soft component sandstone with continual oil emplacement, and low soft component sandstone with intermittent oil emplacement. The physical properties of those types of sandstones were gradually reduced. Quartz cement captured hydrocarbon, carbonate captured hydrocarbon, free hydrocarbon, and adsorbed hydrocarbon were the four main kinds of hydrocarbons. The maturity of those sandstones was decreased progressively, indicating that the formation time of those hydrocarbons was favorable to maturity. Four stages of oil emplacement happened, and large-scale emplacement mainly occurred in the late Jurassic and early Craterous. The evidence demonstrated that tight sandstones’ high porosity could be attributed to positive diagenetic contributions with a complex interplay of chemical compaction, early formed clays, and large-scale oil emplacement. This work would provide new sights for a better understanding of the tight oil accumulation modes, and the findings could be applied in the hydrocarbon exploration and development field.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5328
Author(s):  
Ioan Ardelean

Nuclear Magnetic Resonance (NMR) relaxometry is a valuable tool for investigating cement-based materials. It allows monitoring of pore evolution and water consumption even during the hydration process. The approach relies on the proportionality between the relaxation time and the pore size. Note, however, that this approach inherently assumes that the pores are saturated with water during the hydration process. In the present work, this assumption is eliminated, and the pore evolution is discussed on a more general basis. The new approach is implemented here to extract information on surface evolution of capillary pores in a simple cement paste and a cement paste containing calcium nitrate as accelerator. The experiments revealed an increase of the pore surface even during the dormant stage for both samples with a faster evolution in the presence of the accelerator. Moreover, water consumption arises from the beginning of the hydration process for the sample containing the accelerator while no water is consumed during dormant stage in the case of simple cement paste. It was also observed that the pore volume fractal dimension is higher in the case of cement paste containing the accelerator.


Sign in / Sign up

Export Citation Format

Share Document