Experimental and Numerical Study of Compositional Two-Phase Displacements in Layered Porous Media

2011 ◽  
Author(s):  
Mohammed AlHamdan ◽  
Yildiray Cinar ◽  
Vural Sander Suicmez ◽  
Birol Dindoruk
2011 ◽  
Vol 54 (9) ◽  
pp. 2412-2420 ◽  
Author(s):  
ZhaoQin Huang ◽  
Jun Yao ◽  
YueYing Wang ◽  
Ke Tao

2018 ◽  
Vol 124 (1) ◽  
pp. 263-287 ◽  
Author(s):  
Yacine Debbabi ◽  
Matthew D. Jackson ◽  
Gary J. Hampson ◽  
Pablo Salinas

2021 ◽  
Vol 11 (6) ◽  
pp. 7841-7845
Author(s):  
S. Tomescu ◽  
I. O. Bucur

In this research paper, a numerical study regarding gas-oil separation is presented. Employing the geometry of a classic separator used by the NRDI for Gas Turbines COMOTI and a Computer-Aided Design (CAD) software, the computational domain was defined. To perform the Computational Fluid Dynamics (CFD) investigation, the mesh was created with the ANSYS Meshing tool, and the ANSYS CFX was employed as a solver. The computational domain was split into 5 subdomains, 3 were fluid and 2 were defined as porous media. The volume porosity, loss model, and permeability were set up. In terms of turbulence flow, the standard k–ε model was adopted. The results of the numerical calculations in terms of oil volume fraction and streamline profiles were used to analyze the separator configuration. The results show that the numerical investigation with the VOF (Volume of Fluid Method) - CFD model is capable of analyzing the performance of a two-phase separator equipped with two demisters-porous media.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Hamid Shafiee ◽  
Elaheh NikzadehAbbasi ◽  
Majid Soltani

The magnetic field can act as a suitable control parameter for heat transfer and fluid flow. It can also be used to maximize thermodynamic efficiency in a variety of fields. Nanofluids and porous media are common methods to increase heat transfer. In addition to improving heat transfer, porous media can increase pressure drop. This research is a computational simulation of the impacts of a magnetic field induced into a cylinder in a porous medium for a volume fraction of 0.2 water/Al2O3 nanofluid with a diameter of 10 μm inside the cylinder. For a wide variety of controlling parameters, simulations have been made. The fluid flow in the porous medium is explained using the Darcy-Brinkman-Forchheimer equation, and the nanofluid flow is represented utilizing a two-phase mixed approach as a two-phase flow. In addition, simulations were run in a slow flow state using the finite volume method. The mean Nusselt number and performance evaluation criteria (PEC) were studied for different Darcy and Hartmann numbers. The results show that the amount of heat transfer coefficient increases with increasing the number of Hartmann and Darcy. In addition, the composition of the nanofluid in the base fluid enhanced the PEC in all instances. Furthermore, the PEC has gained its highest value at the conditions relating to the permeable porous medium.


Sign in / Sign up

Export Citation Format

Share Document